Skip to main content

Online Unit Covering in Euclidean Space

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11346))

Abstract

We revisit the online Unit Covering problem in higher dimensions: Given a set of n points in \(\mathbb {R}^d\), that arrive one by one, cover the points by balls of unit radius, so as to minimize the number of balls used. In this paper, we work in \(\mathbb {R}^d\) using Euclidean distance. The current best competitive ratio of an online algorithm, \(O(2^d d \log {d})\), is due to Charikar et al. (2004); their algorithm is deterministic.

  1. (I)

    We give an online deterministic algorithm with competitive ratio \(O(1.321^d)\), thereby improving on the earlier record by an exponential factor. In particular, the competitive ratios are 5 for the plane and 12 for 3-space (the previous ratios were 7 and 21, respectively). For \(d=3\), the ratio of our online algorithm matches the ratio of the current best offline algorithm for the same problem due to Biniaz et al. (2017), which is remarkable (and rather unusual).

  2. (II)

    We show that the competitive ratio of every deterministic online algorithm (with an adaptive deterministic adversary) for Unit Covering in \(\mathbb {R}^d\) under the \(L_{2}\) norm is at least \(d+1\) for every \(d \ge 1\). This greatly improves upon the previous best lower bound, \(\varOmega (\log {d} / \log {\log {\log {d}}})\), due to Charikar et al. (2004).

  3. (III)

    We obtain lower bounds of 4 and 5 for the competitive ratio of any deterministic algorithm for online Unit Covering in \(\mathbb {R}^2\) and respectively \(\mathbb {R}^3\); the previous best lower bounds were both 3.

  4. (IV)

    When the input points are taken from the square or hexagonal lattices in \(\mathbb {R}^2\), we give deterministic online algorithms for Unit Covering with an optimal competitive ratio of 3.

Research supported, in part, by the University of North Florida start-up fund and by the NSF awards CCF-1422311 and CCF-1423615.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Charikar et al. [8] claim (on p. 1435) that a lower bound of 4 for \(d=2\) under the \(L_2\) norm follows from their Theorem 6.2; but this claim appears unjustified; only a lower bound of 3 is implied. Unfortunately, this misinformation has been carried over also by [7, 9].

  2. 2.

    An adaptive adversary is one that tries to force the algorithm perform extensive work by observing each of its actions and constructing the input accordingly step by step.

References

  1. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: The online set cover problem. SIAM J. Comput. 39(2), 361–370 (2009)

    Article  MathSciNet  Google Scholar 

  2. Biniaz, A., Liu, P., Maheshwari, A., Smid, M.H.M.: Approximation algorithms for the unit disk cover problem in 2D and 3D. Comput. Geom. 60, 8–18 (2017)

    Article  MathSciNet  Google Scholar 

  3. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  4. Boyvalenkov, P., Dodunekov, S., Musin, O.R.: A survey on the kissing numbers. Serdica Math. J. 38, 507–522 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Brass, P., Moser, W.O.J., Pach, J.: Research Problems in Discrete Geometry. Springer, New York (2005). https://doi.org/10.1007/0-387-29929-7

    Book  MATH  Google Scholar 

  6. Buchbinder, N., Naor, J.: Online primal-dual algorithms for covering and packing. Math. Oper. Res. 34(2), 270–286 (2009)

    Article  MathSciNet  Google Scholar 

  7. Chan, T.M., Zarrabi-Zadeh, H.: A randomized algorithm for online unit clustering. Theory Comput. Syst. 45(3), 486–496 (2009)

    Article  MathSciNet  Google Scholar 

  8. Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental clustering and dynamic information retrieval. SIAM J. Comput. 33(6), 1417–1440 (2004)

    Article  MathSciNet  Google Scholar 

  9. Dumitrescu, A., Tóth, C.D.: Online unit clustering in higher dimensions. In: Solis-Oba, R., Fleischer, R. (eds.) WAOA 2017. LNCS, vol. 10787, pp. 238–252. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89441-6_18

    Chapter  MATH  Google Scholar 

  10. Edel, Y., Rains, E.M., Sloane, N.J.A.: On kissing numbers in dimensions 32 to 128. Electr. J. Comb. 5, R22 (1998)

    MathSciNet  MATH  Google Scholar 

  11. Ehmsen, M.R., Larsen, K.S.: Better bounds on online unit clustering. Theor. Comput. Sci. 500, 1–24 (2013)

    Article  MathSciNet  Google Scholar 

  12. Epstein, L., van Stee, R.: On the online unit clustering problem. ACM Trans. Algorithms 7(1), 7:1–7:18 (2010)

    Article  MathSciNet  Google Scholar 

  13. Feder, T., Greene, D.H.: Optimal algorithms for approximate clustering. In: Proceedings of 20th ACM Symposium on Theory of Computing (STOC), pp. 434–444 (1988)

    Google Scholar 

  14. Fowler, R.J., Paterson, M., Tanimoto, S.L.: Optimal packing and covering in the plane are NP-complete. Inf. Process. Lett. 12(3), 133–137 (1981)

    Article  MathSciNet  Google Scholar 

  15. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38, 293–306 (1985)

    Article  MathSciNet  Google Scholar 

  16. Hadwiger, H., Debrunner, H.: Combinatorial Geometry in the Plane. Holt, Rinehart and Winston, New York (1964). (English translation by Victor Klee)

    MATH  Google Scholar 

  17. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing problems in image processing and VLSI. J. ACM 32(1), 130–136 (1985)

    Article  MathSciNet  Google Scholar 

  18. Jenssen, M., Joos, F., Perkins, W.: On kissing numbers and spherical codes in high dimensions. Adv. Math. 335, 307–321 (2018)

    Article  MathSciNet  Google Scholar 

  19. Kabatiansky, G.A., Levenshtein, V.I.: On bounds for packings on the sphere and in space. Probl. Inform. Transm. 14(1), 1–17 (1978)

    MathSciNet  Google Scholar 

  20. Kawahara, J., Kobayashi, K.M.: An improved lower bound for one-dimensional online unit clustering. Theor. Comput. Sci. 600, 171–173 (2015)

    Article  MathSciNet  Google Scholar 

  21. Liao, C., Hu, S.: Polynomial time approximation schemes for minimum disk cover problems. J. Comb. Optim. 20(4), 399–412 (2010)

    Article  MathSciNet  Google Scholar 

  22. Megiddo, N., Supowit, K.J.: On the complexity of some common geometric location problems. SIAM J. Comput. 13(1), 182–196 (1984)

    Article  MathSciNet  Google Scholar 

  23. Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Discrete Comput. Geom. 44(4), 883–895 (2010)

    Article  MathSciNet  Google Scholar 

  24. Rankin, R.A.: The closest packing of spherical caps in \(n\) dimensions. Proc. Glasgow Math. Assoc. 2(3), 139–144 (1955)

    Article  MathSciNet  Google Scholar 

  25. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  26. Wyner, A.D.: Capabilities of bounded discrepancy decoding. Bell Syst. Tech. J. 44(6), 1061–1122 (1965)

    Article  MathSciNet  Google Scholar 

  27. Wynn, E.: Covering a unit ball with balls half the radius (2012). https://mathoverflow.net/questions/98007/covering-a-unit-ball-with-balls-half-the-radius

  28. Zarrabi-Zadeh, H., Chan, T.M.: An improved algorithm for online unit clustering. Algorithmica 54(4), 490–500 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dumitrescu, A., Ghosh, A., Tóth, C.D. (2018). Online Unit Covering in Euclidean Space. In: Kim, D., Uma, R., Zelikovsky, A. (eds) Combinatorial Optimization and Applications. COCOA 2018. Lecture Notes in Computer Science(), vol 11346. Springer, Cham. https://doi.org/10.1007/978-3-030-04651-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04651-4_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04650-7

  • Online ISBN: 978-3-030-04651-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics