Skip to main content

Abstract

FeCrAl alloys are rapidly becoming mature candidate alloys for accident tolerant fuel applications. The FeCrAl material class has shown excellent oxidation resistance in high-temperature steam environments, a key aspect of any accident tolerant cladding concept, while also being corrosion resistant, stress corrosion cracking (SCC) resistant, irradiation-induced swelling resistant, weldable, and formable. Current research efforts are focused on design, development and commercial scaling of advanced FeCrAl alloys including large-scale, thin-walled seamless tube production followed by a broad spectrum of degradation evaluations in both normal and off-normal conditions. Included in this discussion is the theoretical analysis of the alloying principles and rules, alloy composition design, and overview of the most recent empirical database on possible degradation phenomena for FeCrAl alloys. The results are derived from extensive in-pile and out-of-pile experiments and form the basis for near-term deployment of a lead-test rod and/or assembly within a commercially operating nuclear power plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.A. Terrani, S.J. Zinkle, L.L. Snead, Advanced oxidation-resistant iron-based alloys for LWR fuel cladding. J. Nucl. Mater. 448, 420–435 (2013). doi:https://doi.org/10.1016/j.jnucmat.2013.06.041

    Article  CAS  Google Scholar 

  2. Z. Duan, H. Yang, Y. Satoh, K. Murakami, S. Kano, Z. Zhao et al., Current status of materials development of nuclear fuel cladding tubes for light water reactors. Nucl. Eng. Des. 316, 131–150 (2017). doi:https://doi.org/10.1016/j.nucengdes.2017.02.031

    Article  CAS  Google Scholar 

  3. S.J. Zinkle, K.A. Terrani, J.C. Gehin, L.J. Ott, L.L. Snead, Accident tolerant fuels for LWRs: A perspective. J. Nucl. Mater. 448, 374–379 (2014). doi:https://doi.org/10.1016/j.jnucmat.2013.12.005

    Article  CAS  Google Scholar 

  4. B.A. Pint, K.A. Terrani, Y. Yamamoto, L.L. Snead, Material Selection for Accident Tolerant Fuel Cladding. Metall. Mater. Trans. E. 2, 190–196 (2015)

    CAS  Google Scholar 

  5. B.A. Pint, K.A. Terrani, M.P. Brady, T. Cheng, J.R. Keiser, High temperature oxidation of fuel cladding candidate materials in steam–hydrogen environments. J. Nucl. Mater. 440, 420–427 (2013). doi:https://doi.org/10.1016/j.jnucmat.2013.05.047

    Article  CAS  Google Scholar 

  6. K.A. Unocic, Y. Yamamoto, B.A. Pint, Effect of Al and Cr Content on Air and Steam Oxidation of FeCrAl Alloys and Commercial APMT Alloy. Oxid. Met. 87, 431–441 (2017). doi:https://doi.org/10.1007/s11085-017-9745-1

    Article  CAS  Google Scholar 

  7. D.J. Park, H.G. Kim, J.Y. Park, Y. Il Jung, J.H. Park, Y.H. Koo, A study of the oxidation of FeCrAl alloy in pressurized water and high-temperature steam environment. Corros. Sci. 94, 459–465 (2015). doi:https://doi.org/10.1016/j.corsci.2015.02.027

    Article  CAS  Google Scholar 

  8. R.B. Rebak, R.J. Blair, P.J. Martiniano, F. Wagenbaugh, E.J. Dolley, Resistance of Advanced Steels to Reaction with High Temperature Steam as Accident Tolerant Fuel Cladding Materials, (n.d.). https://www.researchgate.net/profile/Raul_Rebak/publication/288720128_Resistance_of_advanced_steels_to_reaction_with_high_temperature_steam_as_accident_tolerant_fuel_cladding_materials/links/56a639be08aeca0fddcb4a0f.pdf (Accessed 21 June 2017)

  9. M. Snead, L.L. Snead, K.A. Terrani, K.G. Field, A. Worrall, K.R. Robb et al., Technology Implementation Plan ATF FeCrAl Cladding for LWR Application (Oak Ridge National Laboratory, Oak Ridge, TN, 2014)

    Google Scholar 

  10. Y. Yamamoto, B.A. Pint, K.A. Terrani, K.G. Field, Y. Yang, L.L. Snead, Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors. J. Nucl. Mater. 467, 703–716 (2015). doi:https://doi.org/10.1016/j.jnucmat.2015.10.019

    Article  CAS  Google Scholar 

  11. H.G. Read, H. Murakami, Microstructural influences on the decomposition of an Al-containing ferritic stainless steel. Appl. Surf. Sci. 94, 334–342 (1996)

    Article  Google Scholar 

  12. H.G. Read, H. Murakami, K. Hono, Al partioning in MA 956, An ODS ferritic stainless steel. Scr. Mater. 36, 355–361 (1997)

    Article  CAS  Google Scholar 

  13. C. Capdevila, M.K. Miller, J. Chao, Phase separation kinetics in a Fe–Cr–Al alloy. Acta Mater. 60, 4673–4684 (2012). doi:https://doi.org/10.1016/j.actamat.2012.05.022

    Article  CAS  Google Scholar 

  14. M. Pinkas, Z. Foxman, N. Froumin, P. Hähner, L. Meshi, Sensitivity of thermo-electric power measurements to α–α′ phase separation in Cr-rich oxide dispersion strengthened steels. J. Mater. Sci. 50, 4629–4635 (2015). doi:https://doi.org/10.1007/s10853-015-9014-0

    Article  CAS  Google Scholar 

  15. Z. Száraz, G. Török, V. Kršjak, P. Hähner, SANS investigation of microstructure evolution in high chromium ODS steels after thermal ageing. J. Nucl. Mater. 435, 56–62 (2013). doi:https://doi.org/10.1016/j.jnucmat.2012.12.016

    Article  CAS  Google Scholar 

  16. G. Electric, 630A Mark V Maritime Nuclear Steam Generator Design Studies Summary, GEMP-359. (1965)

    Google Scholar 

  17. P.J. Grobner, The 885F (475C) embrittlement of ferritic stainless steels. Metall. Trans. 4, 251–260 (1973)

    Article  CAS  Google Scholar 

  18. R.O. Williams, Further studies of the iron-chromum system. Trans. Met. Soc. AIME. 212, 497–502 (1958)

    CAS  Google Scholar 

  19. G. Bonny, D. Terentyev, L. Malerba, On the α–α′ miscibility gap of Fe–Cr alloys. Scr. Mater. 59, 1193–1196 (2008). doi:https://doi.org/10.1016/j.scriptamat.2008.08.008

    Article  CAS  Google Scholar 

  20. C.S. Wukusick, The physical metallurgy and oxidation behavior of Fe-Cr-Al-Y alloys (Cincinnati, Ohio, 1966)

    Google Scholar 

  21. S. Kobayashi, T. Takasugi, Mapping of 475 °C embrittlement in ferritic Fe–Cr–Al alloys. Scr. Mater. 63, 1104–1107 (2010). doi:https://doi.org/10.1016/j.scriptamat.2010.08.015

    Article  CAS  Google Scholar 

  22. J. Ejenstam, M. Thuvander, P. Olsson, F. Rave, P. Szakalos, Microstructural stability of Fe-Cr-Al alloys at 450–550 °C. J. Nucl. Mater. (2014). doi:https://doi.org/10.1016/j.jnucmat.2014.11.101

    Article  Google Scholar 

  23. N.M. George, K. Terrani, J. Powers, A. Worrall, I. Maldonado, Neutronic analysis of candidate accident-tolerant cladding concepts in pressurized water reactors. Ann. Nucl. Energy 75, 703–712 (2015). doi:https://doi.org/10.1016/j.anucene.2014.09.005

    Article  CAS  Google Scholar 

  24. K.G. Field, S.A. Briggs, K. Sridharan, R.H. Howard, Y. Yamamoto, Mechanical Properties of Neutron-Irradaited Model and Commercial FeCrAl Alloys. J. Nucl. Mater. 489, 118–128 (2017)

    Article  CAS  Google Scholar 

  25. K.G. Field, S.A. Briggs, P.D. Edmondson, J.C. Haley, R.H. Howard, X. Hu, et al., Database on Performance of Neutron Irradiated FeCrAl Alloys, ORNL/TM-2016/335. (2016)

    Google Scholar 

  26. K.G. Field, M. Snead, Y. Yamamoto, B.A. Pint, K.A. Terrani, Materials properties of FeCrAl alloys for nuclear power production applications, ORNL/TM-2017/186. (2017)

    Google Scholar 

  27. J.R. Regina, J.N. Dupont, A.R. Marder, The effect of chromium on the weldability and microstructure of Fe-Cr-Al weld cladding. Weld. J. 86, 170–178 (2007)

    Google Scholar 

  28. M.N. Gussev, K.G. Field, Y. Yamamoto, Design, Properties, and Weldability of Advanced Oxidation-Resistant FeCrAl Alloys. Mater. Des. 129, 227–238 (2017)

    Article  CAS  Google Scholar 

  29. J.N. Dupont, J.R. Regina, K. Adams, Improving the weldability of fecral weld overlay coatings, Foss. Energy Mater. Conf. 131–137 (2007)

    Google Scholar 

  30. Y. Yamamoto, Development and Quality Assessments of Commercial Heat Production of ATF FeCrAl Tubes (2015)

    Google Scholar 

  31. Y. Yamamoto, M.N. Gussev, B.A. Pint, K.A. Terrani, Examination of Compressive Deformation Routes for Production of ATF FeCrAl Tubes, ORNL/TM-2016/509. (2016)

    Google Scholar 

  32. W. Chubb, S. Alfant, A.A. Bauer, E.J. Jablonowski, F.R. Shober, R.F. Dickerson, Constitution, metallurgy, and oxidation resistance of iron-chromium-aluminum alloys: BMI-1298, (1958)

    Google Scholar 

  33. K.G. Field, X. Hu, K.C. Littrell, Y. Yamamoto, L.L. Snead, Radiation tolerance of neutron-irradiated model Fe–Cr–Al alloys. J. Nucl. Mater. 465, 746–755 (2015). doi:https://doi.org/10.1016/j.jnucmat.2015.06.023

    Article  CAS  Google Scholar 

  34. S.A. Briggs, P.D. Edmondson, Y. Yamamoto, C. Littrell, R.H. Howard, C.R. Daily et al., A combined APT and SANS investigation of alpha prime phase precipitation in neutron-irradiated model FeCrAl alloys. Acta Mater. 129, 217–228 (2016)

    Article  CAS  Google Scholar 

  35. P.D. Edmondson, S.A. Briggs, Y. Yamamoto, R.H. Howard, K. Sridharan, K.A. Terrani et al., Irradiation-enhanced α′ precipitation in model FeCrAl alloys. Scr. Mater. 116, 112–116 (2016). doi:https://doi.org/10.1016/j.scriptamat.2016.02.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the U.S. Department of Energy’s Office of Nuclear Energy, Advanced Fuel Campaign of the Fuel Cycle R&D program and the U.S. Department of Energy, Office of Nuclear Energy, for the Nuclear Energy Enabling Technologies (NEET) program for the Reactor Materials effort. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin G. Field .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Field, K.G., Yamamoto, Y., Pint, B.A., Gussev, M.N., Terrani, K.A. (2019). Accident Tolerant FeCrAl Fuel Cladding: Current Status Towards Commercialization. In: Jackson, J., Paraventi, D., Wright, M. (eds) Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-04639-2_91

Download citation

Publish with us

Policies and ethics