Skip to main content

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 3082 Accesses

Abstract

The corrosion behavior of ceramic coated ZIRLO tubing was evaluated in supercritical water to determine its behavior in high temperature water. The coating architecture consisted of a 4 bilayer TiAlN/TiN coating with Ti bond coat on Zirlo tubes using cathodic arc physical vapor deposition (CA-PVD) technique. On exposure to deaerated supercritical water at 542 °C for 48 h coated tubes exhibited significantly higher weight gain compared to uncoated Zirlo. Examination revealed formation of a uniform ZrO2 layer beneath the coating and of a thickness similar to that on the uncoated tube inner surface. The defects generated during the coating process acted as preferential paths for diffusion of oxygen resulting in the oxidation of substrate Zirlo. However, there was no delamination of the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IAEA TECDOC-996, “Waterside corrosion of zirconium alloys in nuclear power plants”, International Atomic Energy Agency Technical Document 996 (1998)

    Google Scholar 

  2. C. Lemaignan, A.T. Motta, Zirconium alloys in nuclear applications, in ed. by B.R.T. Frost (Ed.), Mater. Sci. Technol. A Comp. Treat. 10B, New York: VCH (1994) 1–51

    Google Scholar 

  3. K.K. Mandapaka, S. Aggarwal, V. Kain, T. Saario, M. Bojinov, Nucl. Eng. Des. 240, 985–994 (2010)

    Article  CAS  Google Scholar 

  4. V. Swan, Proc. ANS ILL (1994) 303–308

    Google Scholar 

  5. C. Lemaignan, J. Nucl. Mater. 187, 122–130 (1992)

    Article  CAS  Google Scholar 

  6. R.A. Perkins, R.A. Busch, ASTM STP-1132, 595–612 (1991)

    Google Scholar 

  7. N. Ramasubramanian, ASTM STP-1132 613–627 (1991)

    Google Scholar 

  8. M. Grosse, J. Stuckert, M. Steinbrück, A. Kaestner, J. Nucl. Mater. 420, 575–582 (2012)

    Article  CAS  Google Scholar 

  9. N.P. Neureiter, B.J. Garrick, R.A. Bari, J. Beard, M. Percy, M.Q. Brewster, M.L. Corradini, Lessons learned from the Fukushima nuclear accident for improving safety of U.S. Nuclear Plants. Natl. Acad. Sci. (2014)

    Google Scholar 

  10. K.A. Terrani, S.J. Zinkle, L.L. Snead, J. Nucl. Mater. 448, 420–435 (2014)

    Article  CAS  Google Scholar 

  11. P. Ahmedabadi, G.S. Was, Corrosion 72(1), 66–77 (2016)

    CAS  Google Scholar 

  12. E. Alat, A.T. Motta, R.J. Comstock, J.M. Partezana, D.E. Wolfe, Surf. Coat. Technol. 281, 133–143 (2015)

    Article  CAS  Google Scholar 

  13. Y. Liu, I. Bhamji, P.J. Withers, D.E. Wolfe, A.T. Motta, M. Preuss, J. Nucl. Mater. 466, 718–727 (2015)

    Article  CAS  Google Scholar 

  14. E. Alat, A.T. Motta, R.J. Comstock, P. M Jonna, D.E Wolfe. J. Nucl. Mater. (2016)

    Google Scholar 

  15. W. Zhong, P.A. Mouche, X. Han, B.J. Heuser, K.K. Mandapaka, G.S. Was, J. Nucl. Mater. 470, 327–338 (2016)

    Article  CAS  Google Scholar 

  16. D. Mattox, Handbook of Physical Vapour Deposition (PVD) Processing: Film Formation, Surface Preparation and Contamination Control (Noyes Publications, Adhesion, 1998)

    Google Scholar 

  17. L. Chen, D. Yong, F. Yin, J. Li, Int. J. Refract. Met. Hard Mater. 25, 72–76 (2007)

    Article  CAS  Google Scholar 

  18. H.G. Prengel, P.C. Jindal, K.H. Wendt, A.T. Santhanam, P.L. Hegde, R.M. Penich, Surf. Coat. Technol. 139, 25–34 (2001)

    Article  CAS  Google Scholar 

  19. C. Anghel, Doctoral thesis on “Modified oxygen and hydrogen transport in Zr-based oxide”, KTH Industrial Engineering and Management (2006)

    Google Scholar 

  20. M. Patel, K. Sickafus, “Multilayer ceramic coating architectures on Zirlo”, presented at CARAT 2016

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge research grant by Office of Nuclear Energy, NEUP program with contract # A13-0708-S001. The CA-PVD coating of multilayer TiN/TiAlN was performed at Penn State University. Authors thank Dr. D. E. Wolfe and group for providing the coated samples for this research. The Zirlo material was provided by Westinghouse. Authors acknowledge help from Alexander Flick during SCW exposure experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary S. Was .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Mandapaka, K.K., Was, G.S. (2019). Corrosion of Multilayer Ceramic-Coated ZIRLO Exposed to High Temperature Water. In: Jackson, J., Paraventi, D., Wright, M. (eds) Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-04639-2_100

Download citation

Publish with us

Policies and ethics