Skip to main content

TAK-242, Toll-Like Receptor 4 Antagonist, Attenuates Brain Edema in Subarachnoid Hemorrhage Mice

  • Chapter
  • First Online:

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 127))

Abstract

Background: Brain edema is a common and critical pathology following subarachnoid hemorrhage (SAH). Toll-like receptor 4 (TLR4) activation may exacerbate brain edema. The purpose of this study was to clarify if TAK-242, a TLR4 antagonist, suppresses brain edema formation and neurological impairments after SAH in mice.

Methods: A total of 46 mice underwent endovascular perforation to induce SAH or sham operation and were classified as Sham+TAK-242, SAH+ phosphate-buffered saline (PBS), and SAH + TAK-242 groups. The PBS or TAK-242 was administered intracerebroventricularly to mice at 30 min from the operation. Neurobehavioral tests, SAH severity, and brain water content were evaluated at 24 h from the operation.

Results: The SAH + PBS group was significantly worse in neurological tests (P < 0.001) and brain water content of the cerebral hemisphere in the bleeding side (p = 0.005) compared with the Sham+PBS group, while there were no differences between the SAH + TAK-242 and Sham+PBS groups. SAH severity in the SAH + PBS group was similar to that in the SAH + TAK-242 group.

Conclusions: Intracerebroventricular administration of TAK-242 possibly prevents neurological impairments at least via suppression of brain edema.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Claassen J, Carhuapoma JR, Kreiter KT, Du EY, Connolly ES, Mayer SA. Global cerebral edema after subarachnoid hemorrhage: frequency, predictors, and impact on outcome. Stroke. 2002;33:1225–32.

    Article  Google Scholar 

  2. Lee CZ, Xue Z, Zhu Y, Yang G-Y, Young WL. Matrix Metalloproteinase-9 inhibition attenuates vascular endothelial growth factor-induced intracerebral hemorrhage. Stroke. 2007;38:2563–8.

    Article  CAS  Google Scholar 

  3. Okada T, Suzuki H. Toll-like receptor 4 as a possible therapeutic target for delayed brain injuries after aneurysmal subarachnoid hemorrhage. Neural Regen Res. 2017;12:193–6.

    Article  Google Scholar 

  4. Garcia JH, Wagner S, Liu KF, Hu XJ. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke. 1995;26:627–34. discussion 635.

    Article  CAS  Google Scholar 

  5. Hanafy KA. The role of microglia and the TLR4 pathway in neuronal apoptosis and vasospasm after subarachnoid hemorrhage. J Neuroinflammation. 2013;10:83.

    Article  CAS  Google Scholar 

  6. Lu P, Gonzales C, Chen Y, Adedoyin A, Hummel M, Kennedy JD, Whiteside GT. CNS penetration of small molecules following local inflammation, widespread systemic inflammation or direct injury to the nervous system. Life Sci. 2009;85:450–6.

    Article  CAS  Google Scholar 

  7. Peri F, Calabrese V. Toll-like receptor 4 (TLR4) modulation by synthetic and natural compounds: an update. J Med Chem. 2014;57:3612–22.

    Article  CAS  Google Scholar 

  8. Altay O, Suzuki H, Hasegawa Y, Caner B, Krafft PR, Fujii M, Tang J, Zhang JH. Isoflurane attenuates blood-brain barrier disruption in ipsilateral hemisphere after subarachnoid hemorrhage in mice. Stroke. 2012;43:2513–6.

    Article  CAS  Google Scholar 

  9. Fujimoto M, Shiba M, Kawakita F, Liu L, Shimojo N, Imanaka-Yoshida K, Yoshida T, Suzuki H. Deficiency of tenascin-C and attenuation of blood-brain barrier disruption following experimental subarachnoid hemorrhage in mice. J Neurosurg. 2015;124:1–10.

    Google Scholar 

  10. Sugawara T, Ayer R, Jadhav V, Zhang JH. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods. 2008;167:327–34.

    Article  Google Scholar 

  11. Klatzo I. Pathophysiological aspects of brain edema. Acta Neuropathol. 1987;72:236–9.

    Article  CAS  Google Scholar 

  12. Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab. 2007;27:697–709.

    Article  CAS  Google Scholar 

  13. Asahi M, Wang X, Mori T, Sumii T, Jung JC, Moskowitz MA, Fini ME, Lo EH. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J Neurosci. 2001;21:7724–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by a Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science to Drs. Fujimoto and Suzuki.

Conflict of Interest: The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Okada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okada, T., Lei, L., Nishikawa, H., Nakano, F., Nakatsuka, Y., Suzuki, H. (2020). TAK-242, Toll-Like Receptor 4 Antagonist, Attenuates Brain Edema in Subarachnoid Hemorrhage Mice. In: Martin, R., Boling, W., Chen, G., Zhang, J. (eds) Subarachnoid Hemorrhage. Acta Neurochirurgica Supplement, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-030-04615-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04615-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04614-9

  • Online ISBN: 978-3-030-04615-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics