Skip to main content

Classification of Motor Imagery EEG Signals with CSP Filtering Through Neural Networks Models

  • Conference paper
  • First Online:
Book cover Advances in Soft Computing (MICAI 2018)

Abstract

The paper reports the development and evaluation of brain signals classifiers. The proposal consisted of three main stages: organization of EEG signals, feature extraction and execution of classification algorithms. The EEG signals used, represent four motor actions: Left Hand, Right Hand, Tongue and Foot movements; in the frame of the Motor Imagery Paradigm. These EEG signals were obtained from a database provided by the Technological University of Graz. From this dataset, only the EEG signals of two healthy subjects were used to carry out the proposed work. The feature extraction stage was carried out by applying an algorithm known as Common Spatial Pattern, in addition to the statistical method called Root Mean Square. The classification algorithms used were: K-Nearest Neighbors, Support Vector Machine, Multilayer Perceptron and Dendrite Morphological Neural Networks. This algorithms was evaluated with two studies. The first one aimed to evaluate the performance in the recognition between two classes of Motor Imagery tasks; Left Hand vs. Right Hand, Left Hand vs. Tongue, Left Hand vs. Foot, Right Hand vs. Tongue, Right Hand vs. Foot and Tongue vs. Foot. The second study aimed to employ the same algorithms in the recognition between four classes of Motor Imagery tasks; Subject 1 - \(93.9\% \pm 3.9\%\) and Subject 2 - \(68.7\% \pm 7\%\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahangi, A., Karamnejad, M., Mohammadi, N., Ebrahimpour, R., Bagheri, N.: Multiple classifier system for EEG signal classification with application to brain-computer interfaces. Neural Comput. Appl. 23(5), 1319–1327 (2013). https://doi.org/10.1007/s00521-012-1074-3

    Article  Google Scholar 

  2. Antelis, J.M., Gudiño-Mendoza, B., Falcón, L.E., Sanchez-Ante, G., Sossa, H.: Dendrite morphological neural networks for motor task recognition from electroencephalographic signals. Biomed. Signal Process. Control. 44, 12–24 (2018). https://doi.org/10.1016/j.bspc.2018.03.010

    Article  Google Scholar 

  3. Asensio Cubero, J., Gan, J.Q., Palaniappan, R.: Extracting optimal tempo-spatial features using local discriminant bases and common spatial patterns for brain computer interfacing. Biomed. Signal Process. Control. 8(6), 772–778 (2013). https://doi.org/10.1016/j.bspc.2013.07.004

    Article  Google Scholar 

  4. Bayliss, J.D.: Use of the evoked potential P3 component for control in a virtual apartment. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 113–116 (2003). https://doi.org/10.1109/TNSRE.2003.814438

    Article  MathSciNet  Google Scholar 

  5. Belhadj, S.A., Benmoussat, N., Krachai, M.D.: CSP features extraction and FLDA classification of EEG-based motor imagery for brain-computer interaction. In: 2015 4th International Conference on Electrical Engineering, ICEE 2015, pp. 3–8 (2016). https://doi.org/10.1109/INTEE.2015.7416697

  6. Chin, Z.Y., Ang, K.K., Wang, C., Guan, C., Zhang, H.: Multi-class filter bank common spatial pattern for four-class motor imagery BCI. In: Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009, vol. 138632, pp. 571–574 (2009). https://doi.org/10.1109/IEMBS.2009.5332383

  7. Donchin, E., Spencer, K.M., Wijesinghe, R.: The mental prosthesis: assessing the speed of a P300-based brain- computer interface. IEEE Trans. Rehabil. Eng. 8(2), 174–179 (2000). https://doi.org/10.1109/86.847808

    Article  Google Scholar 

  8. Han, R.X., Wei, Q.G.: Feature extraction by combining wavelet packet transform and common spatial pattern in brain-computer interfaces. Appl. Mech. Mater. 239, 974–979 (2013). https://doi.org/10.4028/www.scientific.net/AMM.239-240.974

    Article  Google Scholar 

  9. Higashi, H., Tanaka, T.: Simultaneous design of FIR filter banks and spatial patterns for EEG signal classification. IEEE Trans. Biomed. Eng. 60(4), 1100–1110 (2013). https://doi.org/10.1109/TBME.2012.2215960

    Article  Google Scholar 

  10. Hosni, S.M., Gadallah, M.E., Bahgat, S.F., AbdelWahab, M.S.: Classification of EEG signals using different feature extraction techniques for mental-task BCI. In: 2007 International Conference on Computer Engineering Systems, pp. 220–226 (2007). https://doi.org/10.1109/ICCES.2007.4447052, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4447052

  11. Iturrate, I., Antelis, J.M., Andrea, K., Minguez, J.: A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation. IEEE Trans. Robot. 25(3), 614–627 (2009)

    Article  Google Scholar 

  12. Katona, J., Kovari, A.: EEG-based computer control interface for brain-machine interaction. Int. J. Online Eng. 11(6), 43–48 (2015). https://doi.org/10.3991/ijoe.v11i6.5119

    Article  Google Scholar 

  13. Li, M., Li, W., Zhao, J., Meng, Q., Zeng, M., Chen, G.: A P300 model for cerebot – a mind-controlled humanoid robot. In: Kim, J.-H., Matson, E.T., Myung, H., Xu, P., Karray, F. (eds.) Robot Intelligence Technology and Applications 2. AISC, vol. 274, pp. 495–502. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05582-4_43

    Chapter  Google Scholar 

  14. Li, Y., et al.: An EEG-based BCI system for 2-D cursor control by combining Mu/Beta rhythm and P300 potential. IEEE Trans. Biomed. Eng. 57(10 PART 1), 2495–2505 (2010). https://doi.org/10.1109/TBME.2010.2055564

    Article  Google Scholar 

  15. Ma, Y., Ding, X., She, Q., Luo, Z., Potter, T., Zhang, Y.: Classification of motor imagery EEG signals with support vector machines and particle swarm optimization. Comput. Math. Methods Med. 2016(5), 667–677 (2016). https://doi.org/10.1155/2016/4941235

    Article  MathSciNet  MATH  Google Scholar 

  16. Mulder, T.: Motor imagery and action observation: cognitive tools for rehabilitation. J. Neural Transm. 114(10), 1265–1278 (2007). https://doi.org/10.1007/s00702-007-0763-z

    Article  Google Scholar 

  17. Muller-Gerking, J., Pfurtscheller, G., Flyvbjerg, H., Müller-Gerking, J., Pfurtscheller, G., Flyvbjerg, H.: Designing optimal spatial fiters for single-trial EEG classification in a movement task. Clin. Neurophysiol. 110(5), 787–798 (1999). https://doi.org/10.1016/S1388-2457(98)00038-8. http://www.sciencedirect.com/science/article/pii/S1388245798000388

    Article  Google Scholar 

  18. Ritter, G.X., Sussner, P.: An introduction to morphological neural networks. In: Proceedings - International Conference on Pattern Recognition, vol. 4, pp. 709–717 (1996). https://doi.org/10.1109/ICPR.1996.547657

  19. Sossa, H., Guevara, E.: Efficient training for dendrite morphological neural networks. Neurocomputing 131, 132–142 (2014). https://doi.org/10.1016/j.neucom.2013.10.031

    Article  Google Scholar 

  20. Wolpaw, J.R., McFarland, D.J., Neat, G.W., Forneris, C.A.: An EEG-based brain-computer interface for cursor control. Electroencephalogr. Clin. Neurophysiol. 78(3), 252–259 (1991). https://doi.org/10.1016/0013-4694(91)90040-B, http://www.sciencedirect.com/science/article/pii/001346949190040B

    Article  Google Scholar 

  21. Zeidan, F., Martucci, K.T.: Brain mechanisms supporting modulation of pain by mindfulness meditation. J. Neurosci.: Off. J. Soc. Neurosci. 31(14), 5540–5548 (2011). https://doi.org/10.1523/JNEUROSCI.5791-10.2011.Brain

    Article  Google Scholar 

  22. Zhang, Y., Zhou, G., Jin, J., Wang, X., Cichocki, A.: Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface. J. Neurosci. Methods 255, 85–91 (2015). https://doi.org/10.1016/j.jneumeth.2015.08.004

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere appreciation to the Instituto Politécnico Nacional and the Secretaria de Investigación y Posgrado for the economic support provided to carry out this research. This project was supported economically by SIP-IPN (numbers 20180730, 20180943 and 20180846) and CONACYT (65 Frontiers of Science).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Daniel Virgilio Gonzalez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Virgilio Gonzalez, C.D., Sossa Azuela, J.H., Rubio Espino, E., Ponce Ponce, V.H. (2018). Classification of Motor Imagery EEG Signals with CSP Filtering Through Neural Networks Models. In: Batyrshin, I., Martínez-Villaseñor, M., Ponce Espinosa, H. (eds) Advances in Soft Computing. MICAI 2018. Lecture Notes in Computer Science(), vol 11288. Springer, Cham. https://doi.org/10.1007/978-3-030-04491-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04491-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04490-9

  • Online ISBN: 978-3-030-04491-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics