Skip to main content

Interpolated Sequences and Critical L-Values of Modular Forms

  • Chapter
  • First Online:
Book cover Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory

Part of the book series: Texts & Monographs in Symbolic Computation ((TEXTSMONOGR))

Abstract

Recently, Zagier expressed an interpolated version of the Apéry numbers for \(\zeta (3)\) in terms of a critical L-value of a modular form of weight 4. We extend this evaluation in two directions. We first prove that interpolations of Zagier’s six sporadic sequences are essentially critical L-values of modular forms of weight 3. We then establish an infinite family of evaluations between interpolations of leading coefficients of Brown’s cellular integrals and critical L-values of modular forms of odd weight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Ahlgren, Gaussian hypergeometric series and combinatorial congruences, in Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics (Gainesville, FL, 1999). Developmental Math, vol. 4 (Kluwer Academic Publishers, Dordrecht, 2001), pp. 1–12

    Google Scholar 

  2. S. Ahlgren, K. Ono, A Gaussian hypergeometric series evaluation and Apéry number congruences. J. Reine Angew. Math. 2000(518), 187–212 (2000)

    Article  Google Scholar 

  3. G. Almkvist, W. Zudilin, Differential equations, mirror maps and zeta values, in Mirror Symmetry. V. AMS/IP Studies in Advanced Mathematics, vol. 38, pp. 481–515 (American Mathematical Society, Providence, 2006)

    Google Scholar 

  4. G.E. Andrews, R. Askey, R. Roy, Special Functions (Cambridge University Press, Cambridge, 1999)

    Book  Google Scholar 

  5. R. Apéry, Irrationalité de \(\zeta (2)\) et \(\zeta (3)\). Astérisque 61, 11–13 (1979)

    MATH  Google Scholar 

  6. T.M. Apostol, Modular Functions and Dirichlet Series in Number Theory, 2nd edn. (Springer, New York, 1990)

    Book  Google Scholar 

  7. M.-J. Bertin, A. Feaver, J. Fuselier, M. Lalín, M. Manes, Mahler measure of some singular \(K3\)-surfaces, in Women in Numbers 2: Research Directions in Number Theory. Contemporary Mathematics, vol. 606 (American Mathematical Society, Providence, 2013), pp. 149–169

    Google Scholar 

  8. F. Beukers, A note on the irrationality of \(\zeta (2)\) and \(\zeta (3)\). Bull. Lond. Math. Soc. 3(11), 268–272 (1979)

    Article  Google Scholar 

  9. F. Beukers, Another congruence for the Apéry numbers. J. Number Theory 25(2), 201–210 (1987)

    Article  MathSciNet  Google Scholar 

  10. F. Beukers, On Dwork’s accessory parameter problem. Math. Z. 241(2), 425–444 (2002)

    Article  MathSciNet  Google Scholar 

  11. J.M. Borwein, P.B. Borwein, A cubic counterpart of Jacobi’s identity and the AGM. Trans. Am. Math. Soc. 323(2), 691–701 (1991)

    MathSciNet  MATH  Google Scholar 

  12. J.M. Borwein, P.B. Borwein, Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity (Wiley, New York, 1998)

    Google Scholar 

  13. F. Brown, Irrationality proofs for zeta values, moduli spaces and dinner parties. Mosc. J. Comb. Number Theory 6(2–3), 102–165 (2016)

    MathSciNet  MATH  Google Scholar 

  14. H.H. Chan, Y. Tanigawa, Y. Yang, W. Zudilin, New analogues of Clausen’s identities arising from the theory of modular forms. Adv. Math. 228(2), 1294–1314 (2011)

    Article  MathSciNet  Google Scholar 

  15. H. Cohen, Number Theory, Volume II: Analytic and Modern Tools (Springer, New York, 2007)

    Google Scholar 

  16. S. Cooper, Sporadic sequences, modular forms and new series for \(1/\pi \). Ramanujan J. 29(1–3), 163–183 (2012)

    Article  MathSciNet  Google Scholar 

  17. R.M. Damerell, L-functions of elliptic curves with complex multiplication. I. Acta Arith. 17(3), 287–301 (1970)

    Article  MathSciNet  Google Scholar 

  18. S. Formichella, A. Straub, Gaussian binomial coefficients with negative arguments. Preprint, Feb. 2018, arXiv:1802.02684

  19. S. Fukuhara, Y. Yang, Bases for \(S_k(1(4))\) and formulas for even powers of the Jacobi theta function. Int. J. Number Theory 9(8), 1973–1993 (2013)

    Article  Google Scholar 

  20. A. Hurwitz, Über die Entwicklungskoeffizienten der lemniskatischen Funktionen. Math. Ann. 51, 199–226 (1899)

    Google Scholar 

  21. N. Koblitz, \(p\)-adic Numbers, \(p\)-adic Analysis, and Zeta Functions, 2nd edn. (Springer, New York, 1984)

    Google Scholar 

  22. M. Kontsevich, D. Zagier, Periods, in Mathematics Unlimited–2001 and Beyond (Springer, Berlin, 2001), pp. 771–808

    Chapter  Google Scholar 

  23. C. Koutschan, Advanced Applications of the Holonomic Systems Approach. Ph.D. thesis, RISC, Johannes Kepler University, Linz, Austria (2009)

    Google Scholar 

  24. J.-J. Lee, M.R. Murty, D. Park, Generalization of a theorem of Hurwitz. J. Ramanujan Math. Soc. 31(3), 215–226 (2016)

    MathSciNet  Google Scholar 

  25. W.-C.W. Li, L. Long, Atkin and Swinnerton-Dyer congruences and noncongruence modular forms. RIMS Kôkyûroku Bessatsu B51, 269–299 (2014)

    MathSciNet  MATH  Google Scholar 

  26. D. Loeb, Sets with a negative number of elements. Adv. Math. 91(1), 64–74 (1992)

    Article  MathSciNet  Google Scholar 

  27. D. McCarthy, R. Osburn, A. Straub, Sequences, modular forms and cellular integrals. Math. Proc. Cambridge Philos. Soc. (2018). arXiv:1705.05586

  28. R. Osburn, A. Straub, W. Zudilin, A modular supercongruence for \(_6F_5\): an Apéry-like story. Ann. Inst. Fourier (Grenoble) 68(5), 1987–2004 (2018)

    Article  Google Scholar 

  29. M. Rogers, J.G. Wan, I.J. Zucker, Moments of elliptic integrals and critical \(L\)-values. Ramanujan J. 37(1), 113–130 (2015)

    Article  MathSciNet  Google Scholar 

  30. M. Schütt, CM newforms with rational coefficients. Ramanujan J. 19(2), 187–205 (2009)

    Article  MathSciNet  Google Scholar 

  31. A. Selberg, S. Chowla, On Epstein’s zeta-function. J. Reine Angew. Math. 227, 86–110 (1967)

    MathSciNet  MATH  Google Scholar 

  32. G. Shimura, The special values of the zeta functions associated with cusp forms. Commun. Pure Appl. Math. 29(6), 783–804 (1976)

    Article  MathSciNet  Google Scholar 

  33. G. Shimura, On the periods of modular forms. Math. Ann. 229(3), 211–221 (1977)

    Article  MathSciNet  Google Scholar 

  34. J. Stienstra, F. Beukers, On the Picard-Fuchs equation and the formal Brauer group of certain elliptic K3-surfaces. Math. Ann. 271(2), 269–304 (1985)

    Article  MathSciNet  Google Scholar 

  35. A. van der Poorten, A proof that Euler missed... Apéry’s proof of the irrationality of \(\zeta \) (3). Math. Intell. 1(4), 195–203 (1979)

    Google Scholar 

  36. H.A. Verrill, Congruences related to modular forms. Int. J. Number Theory 6(6), 1367–1390 (2010)

    Article  MathSciNet  Google Scholar 

  37. G.N. Watson, Three triple integrals. Quart. J. Math., Oxford Ser. 10, 266–276 (1939)

    Article  MathSciNet  Google Scholar 

  38. D. Zagier, Elliptic modular forms and their applications, The 1-2-3 of Modular Forms (Springer, Berlin, 2008)

    Google Scholar 

  39. D. Zagier, Integral solutions of Apéry-like recurrence equations, in Groups and Symmetries, volume 47 of CRM Proc. Lecture Notes (American Mathematical Society, Providence, 2009), pp. 349–366

    Google Scholar 

  40. D. Zagier, Arithmetic and topology of differential equations, in Proceedings of the 2016 ECM (2017)

    Google Scholar 

  41. I. Zucker, \(70+\) years of the Watson integrals. J. Stat. Phys. 145(3), 591–612 (2011)

    Article  MathSciNet  Google Scholar 

  42. W. Zudilin, A hypergeometric version of the modularity of rigid Calabi–Yau manifolds. SIGMA Symmetry Integrability Geom. Methods Appl. 14, paper no. 086, 16pp. (2018)

    Google Scholar 

Download references

Acknowledgements

The first author would like to thank the Hausdorff Research Institute for Mathematics in Bonn, Germany for their support as this work began during his stay from January 2–19, 2018 as part of the Trimester Program “Periods in Number Theory, Algebraic Geometry and Physics”. He also thanks Masha Vlasenko for her support and encouragement during the initial stages of this project. The authors are particularly grateful to Wadim Zudilin for sharing his proof of Theorem 2 for sequence \(\varvec{F}\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Straub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Osburn, R., Straub, A. (2019). Interpolated Sequences and Critical L-Values of Modular Forms. In: Blümlein, J., Schneider, C., Paule, P. (eds) Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory. Texts & Monographs in Symbolic Computation. Springer, Cham. https://doi.org/10.1007/978-3-030-04480-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04480-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04479-4

  • Online ISBN: 978-3-030-04480-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics