Skip to main content

Introduction

  • Chapter
  • First Online:
  • 396 Accesses

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSCONTINU))

Abstract

Laminates, Sandwiches and Anti-Sandwiches are classically classified as composite structures. Composite structures are multi-layered thin-walled structural elements which exhibit special geometrical features. For this purpose, plane dimensions \(L_\alpha \;\forall \,\alpha \in \{1,2\}\) and the overall thickness H are used.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Altenbach H (1998) Theories for laminated and sandwich plates. Mech Compos Mater 34(3):243–252. https://doi.org/10.1007/BF02256043

    Article  Google Scholar 

  2. Altenbach H, Altenbach J, Rikards R (1996) Einführung in die Mechanik der Laminat- und Sandwichtragwerke - Modellierung und Berechnung von Balken und Platten aus Verbundwerkstoffen. Deutscher Verlag für Grundstoffindustrie, Stuttgart

    Google Scholar 

  3. Altenbach H, Altenbach J, Naumenko K (1998) Ebene Flächentragwerke: Grundlagen der Modellierung und Berechnung von Scheiben und Platten. Springer, Berlin. https://doi.org/10.1007/978-3-642-58721-4

    Book  MATH  Google Scholar 

  4. Altenbach H, Altenbach J, Kissing W (2004) Mechanics of composite structural elements. Springer, Berlin. https://doi.org/10.1007/978-3-662-08589-9

    Book  Google Scholar 

  5. Altenbach H, Eremeyev VA, Naumenko K (2015) On the use of the first order shear deformation plate theory for the analysis of three-layer plates with thin soft core layer. Zeitschrift für Angewandte Mathematik und Mechanik 95(10):1004–1011. https://doi.org/10.1002/zamm.201500069

    Article  MathSciNet  MATH  Google Scholar 

  6. Aron H (1874) Das Gleichgewicht und die Bewegung einer unendlich dünnen, beliebig gekrümmten elastischen Schale. Journal für die reine und angewandte Mathematik 78:136–174. https://doi.org/10.1515/crll.1874.78.136

    Article  MathSciNet  MATH  Google Scholar 

  7. Aßmus M (2018) Global structural analysis at photovoltaic modules: theory, numerics, application (in German). Dissertation, Otto von Guericke University Magdeburg

    Google Scholar 

  8. Başar Y, Krätzig WB (1985) Mechanik der Flächentragwerke: Theorie Berechnungsmethoden, Anwendungsbeispiele. Springer, Wiesbaden. https://doi.org/10.1007/978-3-322-93983-8

    Book  Google Scholar 

  9. Bertram A (2016) Compendium on gradient materials. Otto-von-Guericke Universität, Magdeburg. http://www.ifme.ovgu.de/ifme_media/FL/Publikationen/Compendium+on+Gradient+Materials+Okt+2016.pdf

  10. Carrera E (2002) Theories and finite elements for multilayered, anisotropic, composite plates and shells. Arch Comput Methods Eng 9(2):87–140. https://doi.org/10.1007/BF02736649

    Article  MathSciNet  MATH  Google Scholar 

  11. Carrera E (2003) Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking. Arch Comput Methods Eng 10(3):215–296. https://doi.org/10.1007/BF02736224

    Article  MathSciNet  MATH  Google Scholar 

  12. Cauchy AL (1828) Sur l’équilibre et le movement intérieur des corps considérés comme des masses continues. Ex de Math 4:293–319. http://catalogue.bnf.fr/ark:/12148/cb302073189

  13. Ciarlet PG (1990) Plates and junctions in elastic multi-structures: an asymptotic analysis, vol 14. Research in applied mathematics. Masson, Paris

    MATH  Google Scholar 

  14. Cohen H, DeSilva CN (1966) Nonlinear theory of elastic directed surfaces. J Math Phys 7(6):960–966. https://doi.org/10.1063/1.1705009

    Article  MATH  Google Scholar 

  15. Cosserat E, Cosserat F (1909) Théorie des corps déformables. A. Hermann et fils, Paris. http://jhir.library.jhu.edu/handle/1774.2/34209

  16. Duhem P (1893) Le potentiel thermodynamique et la pression hydrostatique. Annales scientifiques de l’École Normale Supérieure 10:183–230. https://doi.org/10.24033/asens.389

  17. Eisenträger J, Naumenko K, Altenbach H, Meenen J (2015) A user-defined finite element for laminated glass panels and photovoltaic modules based on a layer-wise theory. Compos Struct 133:265–277. https://doi.org/10.1016/j.compstruct.2015.07.049

  18. Ericksen JL, Truesdell C (1957) Exact theory of stress and strain in rods and shells. Arch Rat Mech Anal 1(1):295–323. https://doi.org/10.1007/BF00298012

    Article  MathSciNet  MATH  Google Scholar 

  19. Eringen AC (1999) Microcontinuum field theories: I. Foundations and solids. Springer, New York. https://doi.org/10.1007/978-1-4612-0555-5

    Book  MATH  Google Scholar 

  20. Föppl A (1907) Vorlesungen über technische Mechanik. B.G Teubner, Leipzig

    MATH  Google Scholar 

  21. Girkmann K (1986) Flächentragwerke – Einführung in die Elastostatik der Scheiben, Platten, Schalen und Faltwerke, 6th edn. Springer, New York (First Edition 1946)

    MATH  Google Scholar 

  22. Goldenweizer A (1962) Formulation of approximative theory of shells with the help of the asymptotic integration of the equations of the theory of elasticity (in Russian). Prikl Mat i Mekh 26(4):668–686

    Google Scholar 

  23. Green AE, Naghdi PM, Wainwright WL (1965) A general theory of a cosserat surface. Arch Rat Mech Anal 20(4):287–308. https://doi.org/10.1007/BF00253138

    Article  MathSciNet  Google Scholar 

  24. Günther W (1958) Zur Statik und Kinematik des Cosseratschen Kontinuums. Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft 10:195–213. https://publikationsserver.tu-braunschweig.de/receive/dbbs_mods_00046248

  25. Hencky H (1947) Über die Berücksichtigung der Schubverzerrung in ebenen Platten. Ingenieur-Archiv 16(1):72–76. https://doi.org/10.1007/BF00534518

    Article  MATH  Google Scholar 

  26. Kaplunov JD, Kossovich LY, Nolde E (1998) Dynamics of thin walled elastic bodies. Academic Press, Cambridge

    MATH  Google Scholar 

  27. Kienzler R, Schneider P (2012) Consistent theories of isotropic and anisotropic plates. J Theor Appl Mech 50(3):755–768

    Google Scholar 

  28. Kirchhoff GR (1850) Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. Journal für die reine und angewandte Mathematik 40:51–88. https://doi.org/10.1515/crll.1850.40.51

    Article  MathSciNet  Google Scholar 

  29. Koiter W (1969) Foundations and basic equations of shell theory: a survey of recent progress. Theory of thin shells. IUTAM symposium copenhagen 1967. Springer, Heidelberg, pp 93–105. http://www.springer.com/gp/book/9783642884788

  30. Kröner E (1968) Interrelations between various branches of continuum mechanics. Springer, Berlin, pp 330–340. https://doi.org/10.1007/978-3-662-30257-6_40

    Book  MATH  Google Scholar 

  31. Levinson M (1980) An accurate, simple theory of the statics and dynamics of elastic plates. Mech Res Commun 7(6):343–350. https://doi.org/10.1016/0093-6413(80)90049-X

    Article  MATH  Google Scholar 

  32. Libai A, Simmonds JG (1983) Nonlinear elastic shell theory. Adv Appl Mech 23:271–371. https://doi.org/10.1016/S0065-2156(08)70245-X

    Article  MATH  Google Scholar 

  33. Love AEH (1888) The small free vibrations and deformation of a thin elastic shell. Philos Trans R Soc Lond A: Math, Phys Eng Sci 179:491–546. https://doi.org/10.1098/rsta.1888.0016

    Article  MATH  Google Scholar 

  34. Mindlin RD (1951) Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J Appl Mech 18:31–38

    MATH  Google Scholar 

  35. Naghdi PM (1972) The theory of shells and plates. In: Flügge W (ed) Encyclopedia of physics - linear theories of elasticity and thermoelasticity, vol VI, a/2 (ed. C. Truesdell). Springer, Berlin, pp 425–640. https://doi.org/10.1007/978-3-662-39776-3_5

  36. Naumenko K, Eremeyev VA (2014) A layer-wise theory for laminated glass and photovoltaic panels. Compos Struct 112:283–291. https://doi.org/10.1016/j.compstruct.2014.02.009

    Article  Google Scholar 

  37. Neff P, Hong KI, Jeong J (2010) The Reissner-Mindlin plate is the \(\Gamma \)-limit of Cosserat elasticity. Math Model Methods Appl Sci 20(9):1553–1590. https://doi.org/10.1142/S0218202510004763

    Google Scholar 

  38. Noor AK, Burton WS (1989) Assessment of shear deformation theories for multilayered composite plates. Appl Mech Rev 42(1):1–13. https://doi.org/10.1115/1.3152418

    Article  Google Scholar 

  39. Planterna F (1966) Sandwich construction: the bending and buckling of sandwich beams, plates, and shells. Wiley, New York

    Google Scholar 

  40. Preußer G (1982) Eine Erweiterung der Kirchhoffschen Plattentheorie. Dissertation, Technische Hochschule Darmstadt

    Google Scholar 

  41. Reddy JN (2004) Mechanics of laminated composite plates and shells: theory and analysis, 2nd edn. Taylor & Francis, Boca Raton

    Book  Google Scholar 

  42. Reddy JN (2006) Theory and analysis of elastic plates and shells, 2nd edn. Taylor & Francis, Boca Raton

    Google Scholar 

  43. Reissner E (1944) On the theory of bending of elastic plates. J Math Phys 23(1–4):184–191. https://doi.org/10.1002/sapm1944231184

    Article  MathSciNet  MATH  Google Scholar 

  44. Reissner E (1945) The effect of transverse shear deformation on the bending of elastic plates. J Appl Mech 12:69–77

    Google Scholar 

  45. Saanouni K (2012) Damage mechanics in metal forming: advanced modeling and numerical simulation. ISTE Ltd and Wiley, London. https://doi.org/10.1002/9781118562192

  46. Sab K, Lebeé A (2015) Homogenization of heterogeneous thin and thick plates. Mechanical engineering and solid mechanics series. ISTE Ltd and Wiley, London. https://doi.org/10.1002/9781119005247

  47. Schäfer M (1962) Versuch einer Elastizitätstheorie des zweidimensionalen ebenen Cosserat-Kontinuums. Akademie, Berlin, pp 277–292

    Google Scholar 

  48. Timoshenko S, Woinowsky-Krieger S (1987) Theory of plates and shells, 2nd edn. McGraw-Hill, New York (First Edition 1959)

    MATH  Google Scholar 

  49. Truesdell C (1964) Die Entwicklung des Drallsatzes. Zeitschrift für Angewandte Mathematik und Mechanik 44(4–5):149–158. https://doi.org/10.1002/zamm.19640440402

    Article  MATH  Google Scholar 

  50. Truesdell C, Toupin RA (1960) The classical field theories. In: Flügge S (ed) Encyclopedia of physics - principles of classical mechanics and field theory, vol 2/3/1. Springer, Berlin, pp 226–858. https://doi.org/10.1007/978-3-642-45943-6_2

    Chapter  Google Scholar 

  51. Voigt W (1887) Theoretische Studien über die Elasticitätsverhältnisse der Krystalle. Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen 34:3–52. http://eudml.org/doc/135896

  52. von Kármán T (1910) Festigkeitsprobleme im Maschinenbau, vol IV. Encyklopädie der mathematischen Wissenschaften, pp 311–384

    Google Scholar 

  53. Zhilin PA (1976) Mechanics of deformable directed surfaces. Int J Solids Struct 12(9):635–648. https://doi.org/10.1016/0020-7683(76)90010-X

    Article  MathSciNet  Google Scholar 

  54. Zhilin PA (2006) Applied mechanics - foundations of shells theory (in Russian). Publisher of the Polytechnic University, St. Petersburg. http://mp.ipme.ru/Zhilin/Zhilin_New/pdf/Zhilin_Shell_Book.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Aßmus .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aßmus, M. (2019). Introduction. In: Structural Mechanics of Anti-Sandwiches. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-030-04354-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04354-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04353-7

  • Online ISBN: 978-3-030-04354-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics