Skip to main content

Aligning Manifolds of Double Pendulum Dynamics Under the Influence of Noise

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11307))

Included in the following conference series:

Abstract

This study presents the results of a series of simulation experiments that evaluate and compare four different manifold alignment methods under the influence of noise. The data was created by simulating the dynamics of two slightly different double pendulums in three-dimensional space. The method of semi-supervised feature-level manifold alignment using global distance resulted in the most convincing visualisations. However, the semi-supervised feature-level local alignment methods resulted in smaller alignment errors. These local alignment methods were also more robust to noise and faster than the other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aziz, F., Wong, A.S.W., Welsh, J., Chalup, S.K.: Performance comparison of manifold alignment methods applied to pendulum dynamics. In: Proceedings of the Applied Informatics and Technology Innovation Conference. Springer (2016, in press)

    Google Scholar 

  2. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003). https://doi.org/10.1162/089976603321780317

    Article  MATH  Google Scholar 

  3. Bocsi, B., Csato, L., Peters, J.: Alignment-based transfer learning for robot models. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE (2013). https://doi.org/10.1109/IJCNN.2013.6706721

  4. Chalodhorn, R., Grimes, D.B., Grochow, K., Rao, R.P.N.: Learning to walk through imitation. In: Proceedings of the 20th International Joint Conference on Artifical Intelligence, IJCAI 2007, pp. 2084–2090. Morgan Kaufmann Publishers Inc., San Francisco (2007)

    Google Scholar 

  5. Chalodhorn, R., Rao, R.N.: Learning to imitate human actions through eigenposes. In: Sigaud, O., Peters, J., (eds.) From Motor Learning to Interaction Learning in Robots. Studies in Computational Intelligence, vol. 264, pp. 357–381. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-05181-4-15

  6. Cui, Z., Shan, S., Zhang, H., Lao, S., Chen, X.: Image sets alignment for video-based face recognition. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2626–2633, June 2012. https://doi.org/10.1109/CVPR.2012.6247982

  7. Escolano, F., Hancock, E., Lozano, M.: Graph matching through entropic manifold alignment. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2417–2424 (2011). https://doi.org/10.1109/CVPR.2011.5995583

  8. Fan, K., Mian, A., Liu, W., Li, L.: Unsupervised manifold alignment using soft-assign technique. Mach. Vis. Appl. 27(6), 929–942 (2016)

    Article  Google Scholar 

  9. Guerrero, R., Ledig, C., Rueckert, D.: Manifold alignment and transfer learning for classification of Alzheimer’s disease. In: Wu, G., Zhang, D., Zhou, L. (eds.) MLMI 2014. LNCS, vol. 8679, pp. 77–84. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10581-9_10

    Chapter  Google Scholar 

  10. Ham, J., Lee, D., Saul, L.: Semisupervised alignment of manifolds. In: Proceedings of the Annual Conference on Uncertainty in Artificial Intelligence, vol. 10, pp. 120–127. AISTATS (2005)

    Google Scholar 

  11. He, X., Niyogi, P.: Locality preserving projections. In: Thrun, S., Saul, L.K., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems, vol. 16, pp. 153–160. MIT Press (2004)

    Google Scholar 

  12. Huang, D., Yi, Z., Pu, X.: Manifold-based learning and synthesis. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 39(3), 592–606 (2009). https://doi.org/10.1109/TSMCB.2008.2007499

    Article  Google Scholar 

  13. Jensen, J.S.: Non-linear dynamics of the follower-loaded double pendulum with added support-excitation. J. Sound Vibr. 215(1), 125–142 (1998). https://doi.org/10.1006/jsvi.1998.1620

    Article  Google Scholar 

  14. Luo, B., Hancock, E.R.: Feature matching with Procrustes alignment and graph editing. In: Image Processing And Its Applications, 1999. Seventh International Conference on (Conf. Publ. No. 465), vol. 1, pp. 72–76, July 1999. https://doi.org/10.1049/cp:19990284

  15. Mosavi, A., Varkonyi, A.: Learning in robotics. Int. J. Comput. Appl. 157(1), 0975–8887 (2017)

    Google Scholar 

  16. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010). https://doi.org/10.1109/TKDE.2009.191

    Article  Google Scholar 

  17. Pei, Y., Huang, F., Shi, F., Zha, H.: Unsupervised image matching based on manifold alignment. IEEE Trans. Pattern Anal. Mach. Intell. 34(8), 1658–1664 (2012). https://doi.org/10.1109/TPAMI.2011.229

    Article  Google Scholar 

  18. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–23 (2000). https://doi.org/10.1126/science.290.5500.2319

    Article  Google Scholar 

  19. Wang, C.: A geometric framework for transfer learning using manifold alignment. Ph.d. thesis, Department of Computer Science, University of Massachusetts Amherst, UMass Amherst, September 2010

    Google Scholar 

  20. Wang, C., Krafft, P., Mahadevan, S.: Manifold alignment, Chap. Manifold alignment, pp. 95–120. CRC Press, December 2011. https://doi.org/10.1201/b11431-6

    Chapter  Google Scholar 

  21. Wang, C., Mahadevan, S.: Manifold alignment using procrustes analysis. In: Proceedings of the 25th International Conference on Machine Learning, ICML 2008, pp. 1120–1127. ACM, New York (2008). https://doi.org/10.1145/1390156.1390297

  22. Wang, C., Mahadevan, S.: A general framework for manifold alignment. In: AAAI Fall Symposium: Manifold Learning and Its Applications, pp. 79–86. AAAI Press (2009)

    Google Scholar 

  23. Wang, C., Mahadevan, S.: Manifold alignment preserving global geometry. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence (IJCAI), pp. 1743–1749. AAAI Press (2013)

    Google Scholar 

  24. Wang, X., Yang, R.: Learning 3D shape from a single facial image via non-linear manifold embedding and alignment. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2010, pp. 414–421 (2010). https://doi.org/10.1109/CVPR.2010.5540185

  25. Yang, H.L., Crawford, M.M.: Manifold alignment for multitemporal hyperspectral image classification. In: 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 4332–4335, July 2011. https://doi.org/10.1109/IGARSS.2011.6050190

  26. Zhai, D., Li, B., Chang, H., Shan, S., Chen, X., Gao, W.: Manifold alignment via corresponding projections. In: Proceedings of the British Machine Vision Conference, pp. 1–11. BMVA Press (2010). https://doi.org/10.5244/C.24.3

Download references

Acknowledgements

FA was supported by a UNRSC50:50 PhD scholarship at the University of Newcastle, Australia. The authors are grateful to the UON ARCS team who facilitated access to the UON high performance computing system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fayeem Aziz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aziz, F., Wong, A.S.W., Welsh, J.S., Chalup, S.K. (2018). Aligning Manifolds of Double Pendulum Dynamics Under the Influence of Noise. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11307. Springer, Cham. https://doi.org/10.1007/978-3-030-04239-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04239-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04238-7

  • Online ISBN: 978-3-030-04239-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics