Skip to main content

Image Up-Sampling for Super Resolution with Generative Adversarial Network

  • Conference paper
  • First Online:
AI 2018: Advances in Artificial Intelligence (AI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11320))

Included in the following conference series:

Abstract

In case, we carry out single image Super Resolution (SR) utilizing deep learning, we utilize bicubic interpolation for up-sampling of low resolution images before input them into SR methods. In the preprocessing, these basic interpolation methods cause blur and noise effects for after processed images. These noise images may affect the SR results. In this research, by focusing on this point, we propose a new image up-sampling method utilizing Generative Adversarial Network (GAN). In this work, we improve an image evaluation criterion in generator part of GAN by combining Multi-Scale Structural Similarity (MS-SSIM) and L1 norm. From experiments, we have confirmed that our method allows us to create more qualitatively up-sampling images. As the quantitative results, our proposed method have achieved 0.90 [dB] of average PSNR, 3.35 [%] of average SSIM, and 1.28 [%] of average MS-SSIM improvement using Set 5 and Set 14 dataset compared with bicubic interpolation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Irani, M.: Improving resolution by image registration. CVGIP: Graph. Model. Image Process. 53, 231–239 (1991)

    Google Scholar 

  2. Elad, M., Feuer, A.: Superresolution restoration of an image sequence: adaptive filtering approach. IEEE Trans. Image Process. 8(3), 387–395 (1999)

    Article  Google Scholar 

  3. Cruz, C., Mehta, R., Katkovnik, V., Egiazarian, K.O.: Single image super-resolution based on wiener filter in similarity domain. CoRR abs/1704.04126 (2017)

    Google Scholar 

  4. Wang, L., Xiang, S., Meng, G., Wu, H., Pan, C.: Edge-directed single-image super-resolution via adaptive gradient magnitude self-interpolation. IEEE Trans. Circuits Syst. Video Technol. 23(8), 1289–1299 (2013)

    Article  Google Scholar 

  5. Fattal, R.: Upsampling via imposed edges statistics. ACM Transactions on Graphics 26(3) (2007). (Proceedings of SIGGRAPH 2007)

    Google Scholar 

  6. Freeman, W., Jones, T., Pasztor, E.: Example-based super-resolution. IEEE Comput. Graph. Appl. 22(2), 56–65 (2002)

    Article  Google Scholar 

  7. Sun, J., Zheng, N.N., Tao, H., Shum, H.Y.: Image hallucination with primal sketch priors. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Proceedings, vol. 2, pp. II-729-736 (2003)

    Google Scholar 

  8. Dong, C., Loy, C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016)

    Article  Google Scholar 

  9. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  10. Zhao, Y., et al.: GUN: gradual upsampling network for single image super-resolution. CoRR abs/1703.04244 (2017)

    Google Scholar 

  11. Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 2672–2680. Curran Associates, Inc. (2014)

    Google Scholar 

  12. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. CoRR abs/1609.04802 (2016)

    Google Scholar 

  13. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

  14. Nguyen, A.M., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. CoRR abs/1412.1897 (2014)

    Google Scholar 

  15. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems Computers, vol. 2, pp. 1398–1402, November 2003

    Google Scholar 

  16. Cai, L., Gao, H., Ji, S.: Multi-stage variational auto-encoders for coarse-to-fine image generation. CoRR abs/1705.07202 (2017)

    Google Scholar 

  17. van den Oord, A., Kalchbrenner, N., Kavukcuoglu, K.: Pixel recurrent neural networks. CoRR abs/1601.06759 (2016)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, June 2016

    Google Scholar 

  19. Zhao, H., Gallo, O., Frosio, I., Kautz, J.: Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imaging 3(1), 47–57 (2017)

    Article  Google Scholar 

  20. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  21. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, Upper Saddle River (2007)

    Google Scholar 

  22. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. CoRR abs/1511.04587 (2015)

    Google Scholar 

  23. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. CoRR abs/1707.02921 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shohei Tsunekawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tsunekawa, S., Inoue, K., Yoshioka, M. (2018). Image Up-Sampling for Super Resolution with Generative Adversarial Network. In: Mitrovic, T., Xue, B., Li, X. (eds) AI 2018: Advances in Artificial Intelligence. AI 2018. Lecture Notes in Computer Science(), vol 11320. Springer, Cham. https://doi.org/10.1007/978-3-030-03991-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03991-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03990-5

  • Online ISBN: 978-3-030-03991-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics