Skip to main content

An Improved LBG Algorithm for User Clustering in Ultra-Dense Network

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 891))

Abstract

A novel LBG-based user clustering algorithm is proposed to reduce interference efficiently in Ultra-Dense Network (UDN). There are two stages, weight design and user clustering. Because a user could interfere and be interfered by other users at the same time, a balanced cooperative transmission strategy is utilized in weight design. The improved LBG algorithm is used for user clustering, which overcomes the shortcoming of local optimum of conventional LBG. Moreover, this algorithm is superior to conventional LBG in computational complexity. Simulation results show that the sum rate of cell-edge users increases a lot compared to the reference algorithm, and the average system throughput gets higher obviously.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yunas, S., Valkama, M., Niemela, J.: Spectral and energy efficiency of Ultra-Dense Networks under different eployment strategies. IEEE Commun. Mag. 53(1), 90–100 (2015)

    Article  Google Scholar 

  2. Wang, C., Hu, B., Chen, S., et al.: Joint dynamic access points grouping and resource allocation for coordinated transmission in user-centric UDN. Trans. Emerg. Telecommun. Technol. 29(3), e3265 (2017)

    Article  Google Scholar 

  3. Kunitaka, M., Tomoaki, O.: Orthogonal beamforming using Gram-Schmidt orthogonalization for downlink CoMP system. ITE Tech. Rep. 36(10), 17–20 (2012)

    Google Scholar 

  4. Bu, H.W., Xu, Y.H., Yuan, Z., Hu, Y.J., Yi, H.Y.: An efficient method for managing CoMP cooperating set based on central controller in LTE-A systems. Appl. Mech. Mater. 719–720, 721–726 (2015)

    Article  Google Scholar 

  5. Bassoy, S., Farooq, H., Imran, M.A., Imran, A.: Coordinated multi-point clustering schemes: a survey. IEEE Commun. Surv. Tutor. 19(2), 743–764 (2017)

    Article  Google Scholar 

  6. Grebla, G., Birand, B., van de Ven, P., Zussman, G.: Joint transmission in cellular networks with CoMP-stability and scheduling algorithms. Perform. Eval. 91(C), 38–55 (2015)

    Article  Google Scholar 

  7. Du, T., Qu, S., Liu, F., Wang, Q.: An energy efficiency semi-static routing algorithm for WSNs based on HAC clustering method. Inf. Fusion 21(1), 18–29 (2015)

    Article  Google Scholar 

  8. Xu, D., Ren, P., Du, Q., Sun, L.: Joint dynamic clustering and user scheduling for downlink cloud radio access network with limited feedback. China Commun. 12(12), 147–159 (2015)

    Article  Google Scholar 

  9. Ali, S.S., Saxena, N.: A novel static clustering approach for CoMP. In: IEEE 7th International Conference on Computing and Convergence Technology (ICCCT), Seoul, South Korea, pp. 757–762. IEEE Press (2012)

    Google Scholar 

  10. Wan, Q.: Research on multi-cell clustering cooperative technology in CoMP scene. Beijing University of Posts and Telecommunications, Beijing (2015)

    Google Scholar 

  11. Meng, N., Zhang, H.T., Lu, H.T.: Virtual cell-based mobility enhancement and performance evaluation in Ultra-Dense Networks. In: IEEE Wireless Communications and Networking Conference, Doha, Qatar, pp. 1–6. IEEE Press (2016)

    Google Scholar 

  12. Kurras, M., Fahse, S., Thiele, L.: Density based user clustering for wireless massive connectivity enabling Internet of Things. In: Globecom Workshops (GCWkshps), San Diego, CA, USA, pp. 1–6. IEEE Press (2015)

    Google Scholar 

  13. Patané, G., Russo, M.: The enhanced LBG algorithm. Neural Netw. Off. J. Int. Neural Netw. Soc. 14(9), 1219 (2001)

    Article  Google Scholar 

  14. Wang, J., Tang, S., Sun, C.: Resource allocation based on user clustering in ultra-dense small cell networks. J. Xi’an Univ. Posts Telecommun. 21(1), 16–20 (2016)

    Google Scholar 

  15. Gong, J., Zhou, S., Niu, Z., et al.: Joint scheduling and dynamic clustering in downlink cellular networks. In: Global Telecommunications Conference (Globecom), Houston, Texas, USA, pp. 1–5. IEEE Press (2011)

    Google Scholar 

  16. Ho, Z.K.M., Gesbert, D.: Balancing egoism and altruism on interference channel: the MIMO case. In: International Conference on Communications (ICC), Cape Town, South Africa, pp. 1–5. IEEE Press (2010)

    Google Scholar 

  17. Jindal, N., Rhee, W., Vishwanath, S., et al.: Sum power iterative water-filling for multi-antenna Gaussian broadcast channels. IEEE Trans. Inf. Theory 51(4), 1570–1580 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work was supported by National Science and Technology Major Project of the Ministry of Science and Technology of China (ZX201703001012-005), National Natural Science Foundation of China (61501371), Shaanxi STA International Cooperation and Exchanges Project (2017KW-011) and the Department of Education Shaanxi Province, China, under Grant 2013JK1023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanxia Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, Y. et al. (2019). An Improved LBG Algorithm for User Clustering in Ultra-Dense Network. In: Krömer, P., Zhang, H., Liang, Y., Pan, JS. (eds) Proceedings of the Fifth Euro-China Conference on Intelligent Data Analysis and Applications. ECC 2018. Advances in Intelligent Systems and Computing, vol 891. Springer, Cham. https://doi.org/10.1007/978-3-030-03766-6_6

Download citation

Publish with us

Policies and ethics