Skip to main content

Research on Temperature Compensation Technology of Micro-Electro-Mechanical Systems Gyroscope in Strap-Down Inertial Measurement Unit

  • Conference paper
  • First Online:
Proceedings of the Fifth Euro-China Conference on Intelligent Data Analysis and Applications (ECC 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 891))

Abstract

Due to the characteristics of MEMS gyroscope and the influence of the peripheral driving circuit, the MEMS gyroscope is easily affected by temperature and the accuracy is deteriorated. The compensation delay is caused by the complexity of the model in practical engineering applications. A second-order polynomial compensation model for temperature-divided regions is proposed by analyzing the mechanism of gyroscope zero-bias temperature drift. The Model first divides the temperature region of the gyroscope work, and then uses the least squares method to solve the parameters according to multiple linear regression analysis. Finally, the model was verified by experiments. The results show that the model can effectively reduce the drift temperature drift caused by temperature changes, which can reduce the temperature drift after compensation by 73.3%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, S., Wang, X., Weng, H., et al.: Temperature compensation of MEMS gyroscope based on grey model and RBF neural network. J. Chin. Inert. Technol. 18(6), 742–746 (2010). https://doi.org/10.13695/j.cnki.12-1222/o3.2010.06.002

    Article  Google Scholar 

  2. Cheng, L., Wang, S., Ye, P.: Research on bias temperature compensation for micromachined vibratory gyroscope. J. Chin. Sens. Actuators 21(3), 483–485 (2008)

    Google Scholar 

  3. Qin, W., Fan, W., Chang, H., et al.: Zero drift temperature compensation technology of MEMS gyroscope based on fuzzy logic. J. Proj. Guides 31(6), 19–22 (2011). https://doi.org/10.15892/j.cnki.djzdxb.2011.06.019

    Article  Google Scholar 

  4. Qin, W., Zeng, Z., Liu, G., et al.: Modeling method of gyroscope’s random drift based on wavelet analysis and LSSVM. J. Chin. Inert. Technol. 16(6), 721–724 (2008). https://doi.org/10.13695/j.cnki.12-1222/o3.2008.06.013

    Article  Google Scholar 

  5. Chen, W., Chen, Z., Ma, L., et al.: Temperature characteristic analysis and modeling of MEMS micromachined gyroscope. J. Chin. Sens. Actuators 27(2), 194–197 (2014). https://doi.org/10.3969/j.issn.1004-1699.2014.02.009

    Article  Google Scholar 

  6. Xu, P., Wang, F., Dong, B., et al.: A low-cost adaptive MEMS gyroscope temperature compensation method. Micronanoelectron. Technol. 53(8), 535–540, 562 (2016). https://doi.org/10.13250/j.cnki.wndz.2016.08.007

  7. Zhao, X., Su, Z., Ma, X., et al.: Study on MEMS gyroscope zero offset compensation in large temperature difference application environment. J. Chin. Sens. Actuators 25(8), 1079–1083 (2012). https://doi.org/10.3969/j.issn.1004-1699.2012.08.012

    Article  Google Scholar 

  8. Sun, T., Liu, J.: A New method for modeling and compensating temperature error of MEMS gyroscope. Piezoelectrics Acoustooptics 39(1), 136–139 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Shaanxi Natural Science Foun-dation (2016JQ5051) and the National Science Foundation for Young Scientists of China (51405387).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Liu, C., Xu, J., Zhao, X. (2019). Research on Temperature Compensation Technology of Micro-Electro-Mechanical Systems Gyroscope in Strap-Down Inertial Measurement Unit. In: Krömer, P., Zhang, H., Liang, Y., Pan, JS. (eds) Proceedings of the Fifth Euro-China Conference on Intelligent Data Analysis and Applications. ECC 2018. Advances in Intelligent Systems and Computing, vol 891. Springer, Cham. https://doi.org/10.1007/978-3-030-03766-6_2

Download citation

Publish with us

Policies and ethics