Skip to main content

Malignancies of the Bone

  • Chapter
  • First Online:
Book cover Metabolic Bone Diseases

Abstract

Initial workup of malignant skeletal lesions includes obtaining a thorough clinical history, physical exam, imaging, and laboratory testing. Key findings that suggest underlying malignant bone pathology include the presence of hypercalcemia, history of pathologic fracture associated with a skeletal lesion, and locally aggressive behavior of a bone tumor on imaging. The optimal approach to patients with primary or metastatic bone neoplasm or a hematologic malignancy includes a multidisciplinary approach with a variety of subspecialists. Bone-modifying therapy including bisphosphonates and denosumab plays an important role in the management of pain related to metastatic malignancy of bone and multiple myeloma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASCO:

American Society of Clinical Oncology

BAP:

Bone-specific alkaline phosphatase

BMI:

Body mass index

Bpm:

Beats per minute

CT:

Computed tomography

CTX:

Carboxy-terminal telopeptide of type I collagen or C-telopeptide

dL:

Deciliter

DPD:

Deoxypyridinoline

EBCTCG:

Early Breast Cancer Trialists’ Collaborative Group

ESR:

Erythrocyte sedimentation rate

FDA:

Food and drug administration

G:

Gram

GFR:

Glomerular filtration rate

h:

Hour

IGF:

Insulin-like growth factor

IL:

Interleukin

IV:

Intravenous

K:

     Thousand

L:

     Liter

Lb:

    Pounds

mg:

        Milligram

MGUS:

    Monoclonal gammopathy of undetermined significance

mmHg:

    Millimeters of mercury

mmol:

      Millimoles

MRI:

      Magnetic resonance imaging

Ng:

       Nanogram

NTX:

       Amino-terminal telopeptide of type I collagen or N-telopeptide

ONJ:

        Osteonecrosis of the jaw

P1CP:

      Procollagen type I intact C-terminal propeptide

P1NP:

      Procollagen type I intact N-terminal propeptide

PET:

       Positron emission tomography

Pg:

        Picogram

POEMS:

    Polyneuropathy, organomegaly, endocrinopathy, monoclonal proteins, and skin findings

PTH:

       Parathyroid hormone

PTHrP:

     Parathyroid hormone-related peptide

RANKL:

   Receptor activator of nuclear factor κB ligand

RECIST:

   Response Evaluation Criteria in Solid Tumors

SPECT:

    Single-positron emission tomography

TGF-β:

     Tumor growth factor-β

TRACP5b:

 Isoform 5b of the osteoclast enzyme tartrate-resistant acid phosphatase

U:

         Unit

References

  1. Clines GA, Guise TA. Hypercalcaemia of malignancy and basic research on mechanisms responsible for osteolytic and osteoblastic metastasis to bone. Endocr Relat Cancer. 2005;12(3):549–83.

    Article  CAS  PubMed  Google Scholar 

  2. Edwards CM, Zhuang J, Mundy GR. The pathogenesis of the bone disease of multiple myeloma. Bone. 2008;42(6):1007–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mundy GR, Raisz LG, Cooper RA, Schechter GP, Salmon SE. Evidence for the secretion of an osteoclast stimulating factor in myeloma. N Engl J Med. 1974;291(20):1041–6.

    Article  CAS  PubMed  Google Scholar 

  4. Bataille R, Chappard D, Marcelli C, Dessauw P, Baldet P, Sany J, Alexandre C. Recruitment of new osteoblasts and osteoclasts is the earliest critical event in the pathogenesis of human multiple myeloma. J Clin Investig. 1991;88(1):62–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Woitge HW, Horn E, Keck AV, Auler B, Seibel MJ, Pecherstorfer M. Biochemical markers of bone formation in patients with plasma cell dyscrasias and benign osteoporosis. Clin Chem. 2001;47:686–93.

    CAS  PubMed  Google Scholar 

  6. Guise TA, Yin JJ, Taylor SD, Kumagai Y, Dallas M, Boyce BF, Yoneda T, Mundy GR. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Investig. 1996;98(7):1544–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Henderson MA, Danks JA, Slavin JL, Byrnes GB, Choong PF, Spillane JB, Hopper JL, Martin TJ. Parathyroid hormone-related protein localization in breast cancers predict improved prognosis. Cancer Res. 2006;66(4):2250–6.

    Article  CAS  PubMed  Google Scholar 

  8. Lecouvet FE, Larbi A, Pasoglou V, Omoumi P, Tombal B, Michoux N, Malghem J, Lhommel R, Vande Berg BC. MRI for response assessment in metastatic bone disease. Eur Radiol. 2013;23(7):1986–97.

    Article  CAS  PubMed  Google Scholar 

  9. Cook GJ. PET and PET/CT imaging of skeletal metastases. Cancer Imaging. 2010;10(1):101–8.

    Article  Google Scholar 

  10. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.

    Article  CAS  PubMed  Google Scholar 

  11. Ueda T, Naka N, Araki N, Ishii T, Tsuchiya H, Yoshikawa H, et al. Validation of radiographic response evaluation criteria of preoperative chemotherapy for bone and soft tissue sarcomas: Japanese Orthopaedic Association Committee on musculoskeletal tumors cooperative study. J Orthop Sci. 2008;13(4):304–12.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Guise TA. Molecular mechanisms of osteolytic bone metastases. Cancer. 2000;88(S12):2892–8.

    Article  CAS  PubMed  Google Scholar 

  13. Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy JD. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med. 2003;349(26):2483–94.

    Article  CAS  PubMed  Google Scholar 

  14. Guise TA, Mohammad KS, Clines G, Stebbins EG, Wong DH, Higgins LS, et al. Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin Cancer Res. 2006;12(20 Pt 2):6213s–6s.

    Article  CAS  PubMed  Google Scholar 

  15. Bonica JJ. Management of cancer pain. Acta Anaest Scand Suppl. 1982;74:75–82.

    Article  CAS  Google Scholar 

  16. Downie A, Williams CM, Henschke N, Hancock MJ, Ostelo RW, de Vet HC, et al. Red flags to screen for malignancy and fracture in patients with low back pain: systematic review. BMJ. 2013;347:f7095.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schaberg J, Gainor BJ. A profile of metastatic carcinoma of the spine. Spine. 1985;10(1):19–20.

    Article  CAS  PubMed  Google Scholar 

  18. Healey JH, Brown HK. Complications of bone metastases: surgical management. Cancer. 2000;88(12 Suppl):2940–51.

    Article  CAS  PubMed  Google Scholar 

  19. Buggay D, Jaffe K. Metastatic bone tumors of the pelvis and lower extremity. J Surg Orthop Adv. 2004;12(4):192–9.

    Google Scholar 

  20. Biermann JS, Holt GE, Lewis VO, Schwartz HS, Yaszemski MJ. Metastatic bone disease: diagnosis, evaluation, and treatment. J Bone Joint Surg Am. 2009;91(6):1518–30.

    PubMed  Google Scholar 

  21. Papanastassiou ID, Filis AK, Gerochristou MA, Vrionis FD. Controversial issues in kyphoplasty and vertebroplasty in malignant vertebral fractures. Cancer Control. 2014;21(2):151–7.

    Article  PubMed  Google Scholar 

  22. Health Quality Ontario. Vertebral augmentation involving vertebroplasty or kyphoplasty for cancer-related vertebral compression fractures: a systematic review. Ont Health Technol Assess Ser. 2016;16(11):1–202.

    PubMed Central  Google Scholar 

  23. Gainor BJ, Buchert P. Fracture healing in metastatic bone disease. Clin Orthop. 1983;178:297–302.

    Google Scholar 

  24. Harting MT, Lally KP, Andrassy RJ, Vaporciyan AA, Cox CS, Hayes-Jordan A, Blakely ML. Age as a prognostic factor for patients with osteosarcoma: an analysis of 438 patients. J Cancer Res Clin Oncol. 2010;136(4):561–70.

    Article  PubMed  Google Scholar 

  25. Lee J, Hoang BH, Ziogas A, Zell JA. Analysis of prognostic factors in Ewing sarcoma using a population-based cancer registry. Cancer. 2010;116(8):1964–73.

    Article  PubMed  Google Scholar 

  26. Kyle RA, Durie BGM, Rajkumar SV, Landgren O, Blade J, Merlini G, Kröger N, Einsele H, Vesole DH, Dimopoulos M, San Miguel J, Avet-Loiseau H, Hajek R, Chen WM, Anderson KC, Ludwig H, Sonneveld P, Pavlovsky S, Palumbo A, Richardson PG, Barlogie B, Greipp P, Vescio R, Turesson I, Westin J, Boccadoro M. Monoclonal Gammopathy of Undetermined Significance (MGUS) and smoldering (asymptomatic) multiple myeloma: IMWG consensus perspectives risk factors for progression and guidelines for monitoring and management. Leukemia. 2010;24(6):1121–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Piot JM, Royer M, Schmidt-Tanguy A, Hoppé E, Gardembas M, Bourrée T, et al. Factors associated with an increased risk of vertebral fracture in monoclonal gammopathies of undetermined significance. Blood Cancer J. 2015;5:e345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kyle RA, Durie BG, Rajkumar SV, Landgren O, Blade J, Merlini G, et al. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the international myeloma working group. Br J Haematol. 2003;121(5):749–57.

    Article  Google Scholar 

  29. Wiltshaw E. The natural history of extramedually plasmacytoma and its relation to soliray myeloma of bone and myelomatosis. Medicine. 1976;55(3):217–38.

    Article  CAS  PubMed  Google Scholar 

  30. Kilciksiz S, Karakoyun-Celik O, Agaoglu FY, Haydaroglu A. A review for solitary plasmacytoma of bone and extramedullary plasmacytoma. Sci World J. 2012;2012:895765.

    Article  Google Scholar 

  31. Dispenzieri A. POEMS syndrome: 2014 update on diagnosis, risk-stratification, and management. Am J Hematol. 2014;89(2):213–23.

    Article  Google Scholar 

  32. Dimopoulos M, Kyle R, Fermand J-P, Rajkumar SV, San Miguel J, Chanan-Khan A, Ludwig H, Joshua D, Mehta J, Gertz M, Avet-Loiseau H, Beksac M, Anderson KC, Moreau P, Singhal S, Goldschmidt H, Boccadoro M, Kumar S, Giralt S, Munshi NC, Jagannath S. Consensus recommendations for standard investigative workup: report of the international myeloma workshop consensus panel 3. Blood. 2011;117(18):4701–5.

    Article  CAS  PubMed  Google Scholar 

  33. Fletcher CD, Brigde JA, Hogendoorn PC, Mertens F. World Health Organization classification of tumours of soft tissue and bone. Lyon: IARC Press; 2013.

    Google Scholar 

  34. Dubey P, Ha CS, Besa PC, Fuller L, Cabanillas F, Murray J, Hess MA, Cox JD. Localized primary malignant lymphoma of bone. Int J Radiat Oncol Biol Phys. 1997;37(5):1087–93.

    Article  CAS  PubMed  Google Scholar 

  35. Limb D, Dreghorn C, Murphy JK, Mannion R. Primary lymphoma of bone. Int Orthop. 1994;18(3):180–3.

    Article  CAS  PubMed  Google Scholar 

  36. Ramadan K, Shenkier T, Sehn L, Gascoyne R, Connors J. A clinicopathological retrospective study of 131 patients with primary bone lymphoma: a population-based study of successively treated cohorts from the British Columbia Cancer Agency. Ann Oncol. 2006;18(1):129–35.

    Article  PubMed  Google Scholar 

  37. Zhang X, Zhu J, Song Y, Ping L, Zheng W. Clinical characterization and outcome of primary bone lymphoma: a retrospective study of 61 Chinese patients. Sci Rep. 2016;6:28834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Freeman C, Berg JW, Cutler SJ. Occurrence and prognosis of extranodal lymphomas. Cancer. 1972;29(1):252–60.

    Article  CAS  PubMed  Google Scholar 

  39. Rudders RA, Ross ME, Delellis RA. Primary extranodal lymphoma. Response to treatment and factors influencing prognosis. Cancer. 1978;42(2):406–16.

    Article  CAS  PubMed  Google Scholar 

  40. Van Der Pluijm G, Sijmons B, Vloedgraven H, Deckers M, Papapoulos S, Löwik C. Monitoring metastatic behavior of human tumor cells in mice with species-specific polymerase chain reaction: elevated expression of angiogenesis and bone resorption stimulators by breast cancer in bone metastases. J Bone Miner Res. 2001;16(6):1077–91.

    Article  PubMed  Google Scholar 

  41. Juárez P, Guise TA. TGF-Î2 in cancer and bone: implications for treatment of bone metastases. Bone. 2011;48(1):23–9.

    Article  PubMed  CAS  Google Scholar 

  42. Takai H, Kanematsu M, Yano K, Tsuda E, Higashio K, Ikeda K, Watanabe K, Yamada Y. Transforming growth factor-Î2 stimulates the production of osteoprotegerin/osteoclastogenesis inhibitory factor by bone marrow stromal cells. J Biol Chem. 1998;273(42):27091–6.

    Article  CAS  PubMed  Google Scholar 

  43. Mohan S, Baylink DJ. Bone growth factors. Clin Orthop Relat Res. 1991;263:30–48.

    Google Scholar 

  44. Coleman RE, Rubens RD. The clinical course of bone metastases from breast cancer. Br J Cancer. 1987;55(1):61–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rubens RD, Mundy GR, editors. Bone metastases- incidence and complications. Cancer and the skeleton. London: Martin Dunitz; 2000. p. 33–42.

    Google Scholar 

  46. Fulfaro F, Casuccio A, Ticozzi C, Ripamonti C. The role of bisphosphonates in the treatment of painful metastatic bone disease: a review of phase III trials. Pain. 1998;78(3):157–69.

    Article  CAS  PubMed  Google Scholar 

  47. Fizazi K, Carducci M, Smith M, Damiao R, Brown J, Karsh L, et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration resistant prostate cancer: a randomised, double-blind study. Lancet. 2011;377:813–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Henry DH, Costa L, Goldwasser F, Hirsh V, Hungria V, Prausova J, Scagliotti GV, Sleeboom H, Spencer A, Vadhan-Raj S, von Moos R, Willenbacher W, Woll PJ, Wang J, Qi J, Jun S, Dansey R, Yeh H. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol. 2011;29(9):1125–32.

    Article  CAS  PubMed  Google Scholar 

  49. Stopeck AT, Lipton A, Body J-J, Steger GG, Tonkin K, de Boer RH, Lichinitser M, Fujiwara Y, Yardley DA, Viniegra M, Fan M, Jiang Q, Dansey R, Jun S, Braun A. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol. 2010;28(35):5132–9.

    Article  CAS  PubMed  Google Scholar 

  50. Rosen LS, Gordon D, Kaminski M, Howell A, Belch A, MacKey J, et al. Zoledronic acid versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or osteolytic lesions of multiple myeloma: a phase III, double-blind, comparative trial. Cancer J. 2001;7:377–87.

    CAS  PubMed  Google Scholar 

  51. Barrett-Lee P, Casbard A, Abraham J, Hood K, Coleman R, Simmonds P, Timmins H, Wheatley D, Grieve R, Griffiths G, Murray N. Oral ibandronic acid versus intravenous zoledronic acid in treatment of bone metastases from breast cancer: a randomised, open label, non-inferiority phase 3 trial. Lancet Oncol. 2014;15(1):114–22.

    Article  CAS  PubMed  Google Scholar 

  52. Irelli A, Cocciolone V, Cannita K, Zugaro L, Di Staso M, Baldi PL, Paradisi S, Sidoni T, Ricevuto E, Ficorella C. Bone targeted therapy for preventing skeletal-related events in metastatic breast cancer. Bone. 2016;87:169–75.

    Article  CAS  PubMed  Google Scholar 

  53. Kyle RA, Yee GC, Somerfield MR, Flynn PJ, Halabi S, Jagannath S, Orlowski RZ, Roodman DG, Twilde P, Anderson K. American Society of Clinical Oncology 2007 clinical practice guideline update on the role of bisphosphonates in multiple myeloma. J Clin Oncol. 2007;25(17):2464–72.

    Article  CAS  PubMed  Google Scholar 

  54. Van Poznak CH, Temin S, Yee GC, Janjan NA, Barlow WE, Biermann JS, Bosserman LD, Geoghegan C, Hillner BE, Theriault RL, Zuckerman DS, Von Roenn JH. American Society of Clinical Oncology executive summary of the clinical practice guideline update on the role of bone-modifying agents in metastatic breast cancer. J Clin Oncol. 2011;29(9):1221–7.

    Article  PubMed  CAS  Google Scholar 

  55. Powles T, Paterson S, Kanis JA, McCloskey E, Ashley S, Tidy A, Rosenqvist K, Smith I, Ottestad L, Legault S, Pajunen M, Nevantaus A, Männistö E, Suovuori A, Atula S, Nevalainen J, Pylkkänen L. Randomized, placebo-controlled trial of clodronate in patients with primary operable breast cancer. J Clin Oncol. 2002;20(15):3219–24.

    Article  CAS  PubMed  Google Scholar 

  56. Coleman R, Powles A, Paterson M, Gnant S, Anderson I, Diel J, et al. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Adjuvant bisphosphonate treatment in early breast cancer: meta-analyses of individual patient data from randomised trials. Lancet. 2015;386(10001):1353–61.

    Google Scholar 

  57. Jones DH, Nakashima T, Sanchez OH, Kozieradzki I, Komarova SV, Sarosi I, Morony S, Rubin E, Sarao R, Hojilla CV, Komnenovic V, Kong Y-Y, Schreiber M, Dixon SJ, Sims SM, Khokha R, Wada T, Penninger JM. Regulation of cancer cell migration and bone metastasis by RANKL. Nature. 2006;440(7084):692–6.

    Article  CAS  PubMed  Google Scholar 

  58. Gnant M, Pfeiler G, Dubsky PC, Hubalek M, Greil R, Jakesz R, Wette V, Balic M, Haslbauer F, Melbinger E, Bjelic-Radisic V, Artner-Matuschek S, Fitzal F, Marth C, Sevelda P, Mlineritsch B, Steger GG, Manfreda D, Exner R, Egle D, Bergh J, Kainberger F, Talbot S, Warner D, Fesl C, Singer CF. Adjuvant denosumab in breast cancer (ABCSG-18): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet. 2015;386(9992):433–43.

    Article  CAS  PubMed  Google Scholar 

  59. Blomqvist C, Risteli L, Risteli J, Virkkunen P, Sarna S, Elomaa I. Markers of type I collagen degradation and synthesis in the monitoring of treatment response in bone metastases from breast carcinoma. Br J Cancer. 1996;73(9):1074–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Koizumi M, Matsumoto S, Takahashi S, Yamashita T, Ogata EM. Bone metabolic markers in the evaluation of bone scan flare phenomenon in bone metastases of breast cancer. Clin Nucl Med. 1994;24(1):15–20.

    Article  Google Scholar 

  61. Maeda H, Koizumi M, Yoshimura K, Yamauchi T, Kawai T, Ogata E. Correlation between bone metabolic markers and bone scan in prostatic cancer. J Urol. 1997;157(2):539–43.

    Article  CAS  PubMed  Google Scholar 

  62. Demers LM, Costa L, Lipton A. Biochemical markers and skeletal metastases. Cancer. 2000;88(12 Suppl):2919–26.

    Article  CAS  PubMed  Google Scholar 

  63. Costa L, Demers LM, Speicher T, Gouveia T, Curley E, Harvey H, et al. Biochemical markers of bone turnover correlate with the extent of metastatic bone disease. Cancer. 2000;88(12 Suppl):2919–26.

    PubMed  Google Scholar 

  64. Withold W, Friedrich W, Reinauer H. Comparison of biochemical markers of bone resorption in patients with metabolic and malignant bone diseases. Ann Clin Biochem. 1996;33(Pt 5):421–7.

    Article  CAS  PubMed  Google Scholar 

  65. Lumachi F, Basso SMM, Camozzi V, Tozzoli R, Spaziante R, Ermani M. Bone turnover markers in women with early stage breast cancer who developed bone metastases. A prospective study with multivariate logistic regression analysis of accuracy. Clin Chim Acta. 2016;460:227–30.

    Article  CAS  PubMed  Google Scholar 

  66. Lipton A, Smith MR, Fizazi K, Stopeck AT, Henry D, Brown JE, et al. Changes in bone turnover marker levels and clinical outcomes in patients with advanced cancer and bone metastases treated with bone antiresorptive agents. Clin Cancer Res. 2016;22(23):5713–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Licata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Crawford, M.R., Williams, S.E., Khan, L., Licata, A. (2019). Malignancies of the Bone. In: Camacho, P. (eds) Metabolic Bone Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-03694-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03694-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03693-5

  • Online ISBN: 978-3-030-03694-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics