Skip to main content

The Bull Effect of Endophytic Fungi: An Approach with Quorum Sensing

  • Chapter
  • First Online:
Book cover Advances in Endophytic Fungal Research

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Quorum sensing is a cell-to-cell communication process. This microbial communication process depends on the cell number density. Candida albicans is one of the most commonly studied fungi for quorum sensing. It has been observed that farnesol (quorum sensing molecules) control this communication system. Moreover, aromatic alcohol tyrosol was identified as another fungal quorum sensing molecule in C. albicans. This chapter details the fungal quorum sensing system, quorum sensing molecules controlling growth, biofilm formation, and morphogenesis. Additionally, the chapter also focuses on other fungal quorum sensing mechanisms (including endophytic fungi) and sheds new light on the fungal kingdom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albuquerque P, Casadevall A (2012) Quorum sensing in fungi—a review. Med Mycol 50(4):337–345

    Article  CAS  Google Scholar 

  • Alem MA, Oteef MD, Flowers TH, Douglas LJ (2006) Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development. Eukaryot Cell 5:1770–1779

    Article  CAS  Google Scholar 

  • Anand R, Rai N, Thattai M (2013) Interactions among quorum sensing inhibitors. PLoS One 8(4):e62254

    Article  CAS  Google Scholar 

  • Anguige K, King JR, Ward JP, Williams P (2004) Mathematical modelling of therapies targeted at bacterial quorum sensing. Math Biosci 192(1):39–83. https://doi.org/10.1016/j.mbs.2004.06.008

    Article  CAS  PubMed  Google Scholar 

  • Anguige K, King JR, Ward JP (2005) Modelling antibiotic- and anti-quorum sensing treatment of a spatially-structured Pseudomonas aeruginosa population. J Math Biol 51(5):557–594. https://doi.org/10.1007/s00285-005-0316-8

    Article  CAS  PubMed  Google Scholar 

  • Avbelj M, Zupan J, Kranjc L, Raspor P (2015) Quorum-sensing kinetics in Saccharomyces cerevisiae: a symphony of ARO genes and aromatic alcohols. J Agric Food Chem 63:8544–8550

    Article  CAS  Google Scholar 

  • Balagaddé FK, Song H, Ozaki J, Collins CH, Barnet M, Arnold FH, Quake SR, You L (2008) A synthetic Escherichia coli predator–prey ecosystem. Mol Syst Biol 4(1):187

    PubMed  PubMed Central  Google Scholar 

  • Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R (2005) A synthetic multicellular system for programmed pattern formation. Nature 434(7037):1130–1134

    Article  CAS  Google Scholar 

  • Baym M, Lieberman TD, Kelsic ED, Chait R, Gross R, Yelin I, Kishony R (2016) Spatiotemporal microbial evolution on antibiotic landscapes. Science 353(6304):1147–1151

    Article  CAS  Google Scholar 

  • Beckmann BE, Knoester DB, Connelly BD, Waters CM, McKinley PK (2012) Evolution of resistance to quorum quenching in digital organisms. Artif Life 18(3):291–310

    Article  Google Scholar 

  • Brenner K, Karig DK, Weiss R, Arnold FH (2007) Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium. Proc Natl Acad Sci U S A 104(44):17300–17304

    Article  CAS  Google Scholar 

  • Brock DA, Gomer RH (1999) A cell-counting factor regulating structure size in dictyostelium. Genes Dev 13:1960–1969

    Article  CAS  Google Scholar 

  • Cao YY, Cao YB, Xu Z et al (2005) cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Antimicrob Agents Chemother 49:584–589

    Article  CAS  Google Scholar 

  • Chen H, Fink GR (2006) Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev 20(9):1150–1161

    Article  CAS  Google Scholar 

  • Chen H, Fujita M, Feng Q, Clardy J, Fink GR (2004) Tyrosol is a quorum-sensing molecule in Candida albicans. Proc Natl Acad Sci U S A 101(14):5048–5052

    Article  CAS  Google Scholar 

  • Chen Y, Kim JK, Hirning AJ, Josić K, Bennett MR (2015) Emergent genetic oscillations in a synthetic microbial consortium. Science 349(6251):986–989

    Article  CAS  Google Scholar 

  • Danino T, Mondragón-Palomino O, Tsimring L, Hasty J (2010) A synchronized quorum of genetic clocks. Nature 463(7279):326–330

    Article  CAS  Google Scholar 

  • Datla US, Mather WH, Chen S, Shoultz IW, Täuber UC, Jones CN, Butzin NC (2017) The spatiotemporal system dynamics of acquired resistance in an engineered microecology. Sci Rep 7(1):16071

    Article  Google Scholar 

  • Davis-Hanna A, Piispanen AE, Stateva LI, Hogan DA (2008) Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signalling pathway and the regulation of morphogenesis. Mol Microbiol 67:47–62

    Article  CAS  Google Scholar 

  • Deveau A, Piispanen AE, Jackson AA, Hogan DA (2010) Farnesol induces hydrogen peroxide resistance in Candida albicans yeast by inhibiting the Ras-cyclic AMP signaling pathway. Eukaryot Cell 9:569–577

    Article  CAS  Google Scholar 

  • Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767):335–338

    Article  CAS  Google Scholar 

  • Fagerlind MG, Nilsson P, Harlén M, Karlsson S, Rice SA, Kjelleberg S (2005) Modeling the effect of acylated homoserine lactone antagonists in Pseudomonas aeruginosa. Biosystems 80(2):201–213

    Article  CAS  Google Scholar 

  • Figueroa M, Jarmusch AK, Raja HA, El-Elimat T, Kavanaugh JS, Horswill AR, Cooks RG, Cech NB, Oberlies NH (2014) Polyhydroxyanthraquinones as quorum sensing inhibitors from the guttates of Penicillium restrictum and their analysis by desorption electrospray ionization mass spectrometry. J Nat Prod 77(6):1351–1358

    Article  CAS  Google Scholar 

  • Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767):339–342

    Article  CAS  Google Scholar 

  • Golé L, Rivière C, Hayakawa Y, Rieu JP (2011) A quorum-sensing factor in vegetative Dictyostelium discoideum cells revealed by quantitative migration analysis. PLoS One 6(11):e26901

    Article  Google Scholar 

  • Hall RA, Cottier F, Muhlschlegel FA (2009) Molecular networks in the fungal pathogen Candida albicans. Adv Appl Microbiol 67:191–212

    Article  CAS  Google Scholar 

  • Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW (2001) Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67(7):2982–2992

    Article  CAS  Google Scholar 

  • Hornby JM, Jacobitz-Kizzier SM, McNeel DJ, Jensen EC, Treves DS, Nickerson KW (2004) Inoculum size effect in dimorphic fungi: extracellular control of yeast-mycelium dimorphism in Ceratocystis ulmi. Appl Environ Microbiol 70(3):1356–1359

    Article  CAS  Google Scholar 

  • Kebaara BW, Langford ML, Navarathna DH et al (2008) Candida albicans Tup1 is involved in farnesol-mediated inhibition of filamentous-growth induction. Eukaryot Cell 7:980–987

    Article  CAS  Google Scholar 

  • Kügler S, Sebghati TS, Eissenberg LG, Goldman WE (2000) Phenotypic variation and intracellular parasitism by Histoplasma capsulatum. Proc Natl Acad Sci U S A 97(16):8794–8798

    Article  Google Scholar 

  • Kusari P, Kusari S, Spiteller M, Kayser O (2015) Implications of endophyte-plant crosstalk in light of quorum responses for plant biotechnology. Appl Microbiol Biotechnol 99(13):5383–5390

    Article  CAS  Google Scholar 

  • Langford ML, Atkin AL, Nickerson KW (2009) Cellular interactions of farnesol, a quorum-sensing molecule produced by Candida albicans. Future Microbiol 4:1353–1362

    Article  CAS  Google Scholar 

  • Lee H, Chang YC, Nardone G, Kwon-Chung KJ (2007) TUP1 disruption in Cryptococcus neoformans uncovers a peptide-mediated density-dependent growth phenomenon that mimics quorum sensing. Mol Microbiol 64:591–601

    Article  CAS  Google Scholar 

  • Lohse MB, Gulati M, Johnson AD, Nobile CJ (2018) Development and regulation of single-and multi-species Candida albicans biofilms. Nat Rev Microbiol 16(1):19–31

    Article  CAS  Google Scholar 

  • Majumdar S, Mondal S (2016) Conversation game: talking bacteria. J Cell Commun Signal 10(4):331–335

    Article  Google Scholar 

  • Majumdar S, Pal S (2016) Quorum sensing: a quantum perspective. J Cell Commun Signal 10(3):173–175

    Article  Google Scholar 

  • Majumdar S, Pal S (2017a) Cross-species communication in bacterial world. J Cell Commun Signal 11(2):187–190

    Article  Google Scholar 

  • Majumdar S, Pal S (2017b) Bacterial intelligence: imitation games, time-sharing, and long-range quantum coherence. J Cell Commun Signal 11(3):281–284

    Article  Google Scholar 

  • Majumdar S, Pal S (2018) Information transmission in microbial and fungal communication: from classical to quantum. J Cell Commun Signal 12(2):491–502. https://doi.org/10.1007/s12079-018-0462-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Majumdar S, Roy S (2017) Spatiotemporal patterns and chaos in non-equilibrium bacterial communication. In: 17th BIOMAT international symposium on mathematical and computational biology, Moscow, Russia

    Google Scholar 

  • Majumdar S, Roy S (2018) Relevance of quantum mechanics in bacterial communication. Neuroquantology 16(3):1–6

    Article  Google Scholar 

  • Majumdar S, Datta S, Roy S (2012) Mathematical modelling of quorum sensing and bioluminescence in bacteria. Int J Adv Appl Sci 1(3):139–146

    Google Scholar 

  • Majumdar S, Roy S, Llinas R (2017) Bacterial conversations and pattern formation. bioRxiv. https://doi.org/10.1101/098053

  • Martin-Rodriguez AJ, Reyes F, Martin J, Perez-Yepez J, Leon-Barrios M, Couttolenc A, Espinoza C, Trigos A, Martin VS, Norte M, Fernandez JJ (2014) Inhibition of bacterial quorum sensing by extracts from aquatic fungi: first report from marine endophytes. Mar Drugs 12:5503–5526. https://doi.org/10.3390/md12115503

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  Google Scholar 

  • Rajesh PS, Rai VR (2013) Hydrolytic enzymes and quorum sensing inhibitors from endophytic fungi of Ventilago madraspatana Gaertn. Biocatal Agric Biotechnol 2(2):120–124

    Article  Google Scholar 

  • Ramage G, Saville SP, Wickes BL, Lopez-Ribot JL (2002) Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol 68:5459–5463

    Article  CAS  Google Scholar 

  • Roca MG, Arlt J, Jeffree CE, Read ND (2005) Cell biology of conidial anastomosis tubes in Neurospora crassa. Eukaryot Cell 4(5):911–919

    Article  CAS  Google Scholar 

  • Sato T, Watanabe T, Mikami T, Matsumoto T (2004) Farnesol, a morphogenetic autoregulatory substance in the dimorphic fungus Candida albicans, inhibits hyphae growth through suppression of a mitogen-activated protein kinase cascade. Biol Pharm Bull 27:751–752

    Article  CAS  Google Scholar 

  • Scott SR, Hasty J (2016) Quorum sensing communication modules for microbial consortia. ACS Synth Biol 5(9):969–977

    Article  CAS  Google Scholar 

  • Seeley TD, Visscher PK (2004) Group decision making in nest-site selection by honey bees. Apidologie (Celle) 35:101–116

    Article  Google Scholar 

  • Severin FF, Meer MV, Smirnova EA, Knorre DA, Skulachev VP (2008) Natural causes of programmed death of yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1783(7):1350–1353

    Article  CAS  Google Scholar 

  • Shapiro JA (1998) Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol 52:81–104

    Article  CAS  Google Scholar 

  • Sharma M, Prasad R (2011) The quorum-sensing molecule farnesol is a modulator of drug efflux mediated by ABC multidrug transporters and synergizes with drugs in Candida albicans. Antimicrob Agents Chemother 55:4834–4843

    Article  CAS  Google Scholar 

  • Shou W, Ram S, Vilar JM (2007) Synthetic cooperation in engineered yeast populations. Proc Natl Acad Sci U S A 104(6):1877–1882

    Article  CAS  Google Scholar 

  • Song H, Payne S, Gray M, You L (2009) Spatiotemporal modulation of biodiversity in a synthetic chemical-mediated ecosystem. Nat Chem Biol 5(12):929–935

    Article  CAS  Google Scholar 

  • Sprague GF Jr, Winans SC (2006) Eukaryotes learn how to count: quorum sensing by yeast. Genes Dev 20:1045–1049

    Article  CAS  Google Scholar 

  • Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring LS, Hasty J (2008) A fast, robust and tunable synthetic gene oscillator. Nature 456(7221):516–519

    Article  CAS  Google Scholar 

  • Viretta AU, Fussenegger M (2004) Modeling the quorum sensing regulatory network of human-pathogenic Pseudomonas aeruginosa. Biotechnol Prog 20:670–678. https://doi.org/10.1021/bp034323l

    Article  CAS  Google Scholar 

  • Ward J (2008) Mathematical modeling of quorum-sensing control in biofilms. In: Balaban N (ed) Control of biofilm infections by signal manipulation, vol. 2 of Springer Series on Biofilms. Springer, Berlin, pp 79–108

    Google Scholar 

  • Westwater C, Balish E, Schofield DA (2005) Candida albicans-conditioned medium protects yeast cells from oxidative stress: a possible link between quorum sensing and oxidative stress resistance. Eukaryot Cell 4:1654–1661

    Article  CAS  Google Scholar 

  • Williams P, Winzer K, Chan WC, Camara M (2007) Look who’s talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc Lond Ser B Biol Sci 362(1483):1119–1134

    Article  CAS  Google Scholar 

  • You L, Cox RS III, Weiss R, Arnold FH (2004) Programmed population control by cell–cell communication and regulated killing. Nature 428(6985):868–871

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mondal, S., Majumdar, S. (2019). The Bull Effect of Endophytic Fungi: An Approach with Quorum Sensing. In: Singh, B. (eds) Advances in Endophytic Fungal Research. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-03589-1_8

Download citation

Publish with us

Policies and ethics