Skip to main content

Classic Carbon Nanostructures

  • Chapter
  • First Online:

Abstract

The era of carbon-based nanotechnology, as it is well-known, started from 1985 when the fullerene C60 was discovered. The rediscovery of carbon nanotubes and unexpected discovery of graphene gave a powerful impulse to the further development of carbon nanostructures. At present, these nanocarbons, as well as nanodiamonds or nanofibers, can already be considered as “conventional” carbon nanostructures.

Image reproduced with permission of the MDPI (Materials 2017, 10(9), 1066)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    See also section below on graphane.

  2. 2.

    See also sections on solubilization of carbon allotropes in water and organic solvents.

  3. 3.

    See also a generalized book: Optical Properties of Graphene, Edited by R. Binder. World Scientific, 2017, 516 pp.

  4. 4.

    See https://www.nature.com/search?article_type=protocols,research,reviews&subject=synthesis-of-graphene. Accessed on 3 Jan 2018.

  5. 5.

    See also the state-of-the-art review on ultrasound methods for graphene preparation: Muthoosamy K., Manickam S. State of the art and recent advances in the ultrasound-assisted synthesis, exfoliation and functionalization of graphene derivatives. Ultrason. Sonochem. 2017, 39, 478–493.

  6. 6.

    See also sections on coordination chemistry of carbon allotropes.

  7. 7.

    Via the “molecular surgical method ,” that is, opening a hole on a C60 surface, enlargement of the hole, insertion of a guest species, and enclosure of the hole without loss of the encapsulated guest (Phil. Trans. R. Soc. A, 2013, 371, 20110636)

  8. 8.

    Highly recommended recent review

  9. 9.

    The high surface area 3D framework of the CNTs coupled with the high edge density of graphene is the fundamental advantage of this integrated graphene-CNT structure.

  10. 10.

    which can dissolve carbon to form metal carbides

  11. 11.

    See also the section on the MOF-derived nanocarbons.

  12. 12.

    See relative information on the decoration of carbon nanotubes in a review: Decoration of carbon nanotubes with metal nanoparticles: Recent trends. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 2016, 46(1), 55–76.

  13. 13.

    See related data on the solubilization of carbon nanotubes in: Solubilization and Dispersion of Carbon Nanotubes. Springer-Nature, 2017, 250 pp.

  14. 14.

    See the information on CNTs-metal complex composites in: Coordination and organometallic compounds in the functionalization of carbon nanotubes. J. Coord. Chem., 2014, 67(23–24), 3769–3808.

  15. 15.

    See also information in the section of metal-complex composites of CNFs.

References

  1. M.I. Katsnelson, K.S. Novoselov, Graphene: new bridge between condensed matter physics and quantum electrodynamics. Solid State Commun. 143(1), 3–13 (2007)

    Article  CAS  Google Scholar 

  2. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    Article  CAS  Google Scholar 

  3. R. Heyrovska, Atomic structures of graphene, benzene and methane with bond lengths as sums of the single, double and resonance bond radii of carbon. arXiv:0804.4086, 2008, Freely accessible [physics.gen-ph].

    Google Scholar 

  4. O.B. Shenderova, V.V. Zhirnov, D.W. Brenner, Carbon nanostructures. Crit. Rev. Solid State Mater. Sci. 27(3–4), 227–356 (2002)

    Article  CAS  Google Scholar 

  5. F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217), 1246501 (2015)

    Article  CAS  Google Scholar 

  6. A.A. Balandin, S. Ghosh, W. Bao, et al., Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)

    Article  CAS  Google Scholar 

  7. S. Chen, Q. Wu, C. Mishra, et al., Thermal conductivity of isotopically modified graphene. Nat. Mater. 11(3), 203–207 (2012)

    Article  CAS  Google Scholar 

  8. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–358 (2008)

    Article  CAS  Google Scholar 

  9. Y. Talukdar, J.T. Rashkow, G. Lalwani, S. Kanakia, B. Sitharaman, The effects of graphene nanostructures on mesenchymal stem cells. Biomaterials 35(18), 4863–4877 (2014)

    Article  CAS  Google Scholar 

  10. Y. Gogotsi, Carbon Nanomaterials (CRC Press, 2006), Boca Raton, FL, USA, p. 344

    Google Scholar 

  11. A. Jorio, M.S. Dresselhaus, G. Dresselhaus, Y. Gogotsi, Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, 1st edn. (Springer, Berlin, 2008), p. 744

    Book  Google Scholar 

  12. R. Haug, Advances in Solid State Physics, vol 47, 1st edn. (Springer, Berlin, 2008), p. 363

    Google Scholar 

  13. B. Bharat Bhushan, Springer Handbook of Nanotechnology, 1st edn. (Springer, 2008), New York, p. 363

    Google Scholar 

  14. C.E. Banks, D.A.C. Brownson, 2D Materials: Characterization, Production and Applications (CRC Press, Boca Raton, 2018), p. 248

    Book  Google Scholar 

  15. J. Zhang, Chemically Derived Graphene (Royal Society of Chemistry, Cambridge, 2018), p. 383

    Book  Google Scholar 

  16. A. M. Grumezescu (ed.), Fullerenes, Graphenes and Nanotubes: A Pharmaceutical Approach (William Andrew, San Diego, 2018), p. 700

    Google Scholar 

  17. A. Tiwari, Graphene Bioelectronics (Elsevier Science, Amsterdam, 2017), p. 388

    Google Scholar 

  18. D.P. Hansora, S. Mishra, Graphene Nanomaterials: Fabrication, Properties, and Applications (Pan Stanford, Singapore, 2017), p. 282

    Google Scholar 

  19. R. Van Noorden, Moving towards a graphene world. Nature 442, 228–229 (2006)

    Article  CAS  Google Scholar 

  20. S. Müller, K. Müllen, Expanding benzene to giant graphenes: towards molecular devices. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365(1855), 1453–1472 (2007)

    Article  CAS  Google Scholar 

  21. T. Ando, Exotic electronic and transport properties of graphene. Physica E. 40(2), 213–227 (2007)

    Article  CAS  Google Scholar 

  22. T. Aida, T. Fukushima, Soft materials with graphitic nanostructures. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365(1855), 1539–1552 (2007)

    Article  CAS  Google Scholar 

  23. A.D. Ghuge, A.R. Shirode, V.J. Kadam, Graphene: a comprehensive review. Curr. Drug Targets. 18(6), 724–733 (2017)

    Article  CAS  Google Scholar 

  24. J. Wu, W. Pisula, K. Mullen, Graphenes as potential material for electronics. Chem. Rev. 107, 718–747 (2007)

    Article  CAS  Google Scholar 

  25. X. Yu, H. Cheng, M. Zhang, Y. Zhao, L. Qu, G. Shi, Graphene-based smart materials. Nat. Rev. Mater. 2, 17046 (2017)

    Article  CAS  Google Scholar 

  26. M. Chen, R.C. Haddon, R. Yan, E. Bekyarova, Advances in transferring chemical vapour deposition graphene: a review. Mater. Horiz. 4, 1054–1063 (2017)

    Article  CAS  Google Scholar 

  27. P. Solís-Fernández, M. Bissett, H. Ago, Synthesis, structure and applications of graphene-based 2D heterostructures. Chem. Soc. Rev. 46, 4572–4613 (2017)

    Article  Google Scholar 

  28. C. Melios, C.E. Giusca, V. Panchal, O. Kazakova, Water on graphene: review of recent progress. 2D Mater. 5(2), 022001 (2018)

    Article  Google Scholar 

  29. X. Li, J. Yu, S. Wageh, et al., Graphene in photocatalysis: a review. Small 12(48), 6640–6696 (2016)

    Article  CAS  Google Scholar 

  30. Y. Zhu, H. Ji, H.-M. Cheng, R.S. Ruoff, Mass production and industrial applications of graphene materials. Nat. Sci. Rev. nwx055 (2017). https://doi.org/10.1093/nsr/nwx055

    Article  Google Scholar 

  31. A. Azam, N.N. Zulkapli, N. Dorah, et al., Review—critical considerations of high quality graphene synthesized by plasma-enhanced chemical vapor deposition for electronic and energy storage devices. ECS J. Solid State Sci. Technol. 6(6), M3035–M3048 (2017)

    Article  CAS  Google Scholar 

  32. G. Gruner, L. Hu, D. Hecht, Graphene film as transparent and electrically conducting material. U.S. patent 20070284557, 2007. http://www.freepatentsonline.com/20070284557.html

  33. R.K. Prud’homme, B. Ozbas, I.A. Aksay, R.A. Register, D.H. Adamson, Functional graphene – rubber nanocomposites. U.S. Patent Application Filed – Invention # 07-2323-1, 2006

    Google Scholar 

  34. B.Z. Jang, Highly conductive nano-scaled graphene plate nanocomposites and products. US Patent 20070158618, 2007. http://www.freshpatents.com/Bor-Z-Jang-cndirb.php

  35. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/470918/Graphene_-_the_worldwide_patent_landscape_in_2015.pdf. Accessed on 3 Jan 2018

  36. D.A. Abanin, K.S. Novoselov, U. Zeitler, P.A. Lee, A.K. Geim, L.S. Levitov, Dissipative quantum hall effect in graphene near the Dirac point. Phys. Rev. Lett. 98(19), 196806 (2007)

    Article  CAS  Google Scholar 

  37. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007)

    Article  CAS  Google Scholar 

  38. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, D. Obergfell, S. Roth, C. Girit, A. Zettl, On the roughness of single- and bi-layer graphene membranes. Solid State Commun. 143(1), 101–109 (2007)

    Article  CAS  Google Scholar 

  39. K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim, Room-temperature quantum Hall effect in graphene. Science 315(5817), 1379 (2007)

    Article  CAS  Google Scholar 

  40. S. Pisana, M. Lazzeri, C. Casiraghi, K.S. Novoselov, A.K. Geim, A.C. Ferrari, F. Mauri, Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat. Mater. 6(3), 198–201 (2007)

    Article  CAS  Google Scholar 

  41. K.S. Novoselov, Technology: rapid progress in producing graphene. Nature 505, 291 (2014)

    Article  CAS  Google Scholar 

  42. J. van den Brink, Graphene: from strength to strength. Nat. Nanotechnol. 2(4), 199–201 (2007)

    Article  CAS  Google Scholar 

  43. F. Hui, E. Grustan-Gutierrez, S. Long, et al., Graphene and related materials for resistive random access memories. Adv. Electron. Mater. 3(8), 1600195 (2017)

    Article  CAS  Google Scholar 

  44. A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, S. Iijima, Direct evidence for atomic defects in graphene layers. Nature 430(7002), 870–873 (2004)

    Article  CAS  Google Scholar 

  45. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets. Nature 446(7131), 60–63 (2007)

    Article  CAS  Google Scholar 

  46. C.-T. Lin, C.-Y. Lee, H.-T. Chiu, T.-S. Chin, Graphene structure in carbon nanocones and Nanodiscs. Langmuir 23(26), 12806–12810 (2007)

    Article  CAS  Google Scholar 

  47. Y. Chen, J. Lu, Z. Gao, Structural and electronic study of nanoscrolls rolled up by a single graphene sheet. J. Phys. Chem. C. 111(4), 1625–1630 (2007)

    Article  CAS  Google Scholar 

  48. X. Li, L. Tao, Z. Chen, et al., Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Appl. Phys. Rev. 4, 021306 (2017)

    Article  CAS  Google Scholar 

  49. Z. Peralta-Inga, J.S. Murray, M. Edward Grice, S. Boyd, C.J. O'Connor, P. Politzer, Computational characterization of surfaces of model graphene systems. THEOCHEM J. Mol. Struct. 549(1), 147–158 (2001)

    Article  CAS  Google Scholar 

  50. K.A. Ritter, J.W. Lyding, The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 8, 235–242 (2009)

    Article  CAS  Google Scholar 

  51. Y. Liu, G. Wang, Q. Huang, L. Guo, X. Chen, Structural and electronic properties of T graphene: a two-dimensional carbon allotrope with tetrarings. Phys. Rev. Lett. 108, 225505 (2012)

    Article  CAS  Google Scholar 

  52. A.D. Güçlü, P. Potasz, P. Hawrylak, Electric-field controlled spin in bilayer triangular graphene quantum dots. Phys. Rev. B 84, 035425 (2011)

    Article  CAS  Google Scholar 

  53. L. Tang, R. Ji, X. Cao, et al., Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 8(6), 5102–5110 (2012)

    Article  CAS  Google Scholar 

  54. X. Gao, J. Jang, S. Nagase, Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C 114(2), 832–842 (2009)

    Article  CAS  Google Scholar 

  55. D. Konios, M.M. Stylianakis, E. Stratakis, E. Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 430, 108–112 (2014)

    Article  CAS  Google Scholar 

  56. H. He, J. Klinowski, M. Forster, A. Lerf, A new structural model for graphite oxide. Chem. Phys. Lett. 287(1–2), 53–56 (1998). https://commons.wikimedia.org/w/index.php?curid=18699429.

    Article  CAS  Google Scholar 

  57. S. Pei, H.-M. Cheng, The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012)

    Article  CAS  Google Scholar 

  58. S. Pei, J. Zhao, J. Du, W. Ren, H.-M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48(15), 4466–4474 (2010)

    Article  CAS  Google Scholar 

  59. M. Inagaki, F. Kang, Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne. J. Mater. Chem. A 2, 13193–13206 (2014)

    Article  CAS  Google Scholar 

  60. J. Sun, Y. Deng, J. Li, et al., A new graphene derivative: hydroxylated graphene with excellent biocompatibility. ACS Appl. Mater. Interfaces 8(16), 10226–10233 (2016)

    Article  CAS  Google Scholar 

  61. Image gallery - graphite and graphene. http://www.ewels.info/img/science/graphite/index.html. Accessed 26 Jan 2008

  62. M. Pumera, Z. Sofer, Towards stoichiometric analogues of graphene: graphane, fluorographene, graphol, graphene acid and others. Chem. Soc. Rev. 46, 4450–4463 (2017)

    Article  CAS  Google Scholar 

  63. Z. Lin, X. Ye, J. Han, Q. Chen, et al., Precise control of the number of layers of graphene by picosecond laser thinning. Sci. Rep. 5, 11662 (2015)

    Article  CAS  Google Scholar 

  64. B. Andonovic, A. Ademi, A. Grozdanov, Enhanced model for determining the number of graphene layers and their distribution from X-ray diffraction data. Beilstein J. Nanotechnol. 6, 2113–2122 (2015)

    Article  CAS  Google Scholar 

  65. H. Shigeo, G. Takuya, F. Masahiro, A. Toru, Y. Tadahiro, M. Yoshio, Single graphene sheet detected in a carbon nanofilm. Appl. Phys. Lett. 84, 2403 (2004)

    Article  CAS  Google Scholar 

  66. Z.H. Ni, H.M. Wang, J. Kasim, H.M. Fan, T. Yu, Y.H. Wu, Y.P. Feng, Z.X. Shen, Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 7(9), 2758–2763 (2007)

    Article  CAS  Google Scholar 

  67. C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K.S. Novoselov, A.C. Ferrari, Rayleigh imaging of graphene and graphene layers. Nano Lett. 7(9), 2711–2717 (2007)

    Article  CAS  Google Scholar 

  68. S. Grimme, C. Muck-Lichtenfeld, J. Antony, Noncovalent interactions between graphene sheets and in multishell (hyper)fullerenes. J. Phys. Chem. C 111(30), 11199–11207 (2007)

    Article  CAS  Google Scholar 

  69. M. Ishigami, J.H. Chen, W.G. Cullen, M.S. Fuhrer, E.D. Williams, Atomic structure of graphene on SiO2. Nano Lett. 7(6), 1643–1648 (2007)

    Article  CAS  Google Scholar 

  70. Y.A. Sitenko, N.D. Vlasii, Electronic properties of graphene with a topological defect. Nucl. Phys. B 787(3), 241–259 (2007)

    Article  CAS  Google Scholar 

  71. V. Barone, O. Hod, G.E. Scuseria, Electronic structure and stability of semiconducting graphene. Nanoribbons. Nano Lett. 6(12), 2748–2754 (2006)

    Article  CAS  Google Scholar 

  72. A. Cortijo, M.A.H. Vozmediano, Electronic properties of curved graphene sheets. Europhysics Lett. 77(4), 47002 (2007)

    Article  CAS  Google Scholar 

  73. F. Lopez-Urias, J.A. Rodriguez-Manzo, E. Munoz-Sandoval, M. Terrones, H. Terrones, Magnetic response in finite carbon graphene sheets and nanotubes. Opt. Mater. 29(1), 110–115 (2006)

    Article  CAS  Google Scholar 

  74. T. Christensen, Electronic properties of graphene, in From Classical to Quantum Plasmonics in Three and Two Dimensions, (Springer, Cham, 2017), pp. 83–96

    Chapter  Google Scholar 

  75. J. Zhang, C. Zhao, N. Liu, et al., Tunable electronic properties of graphene through controlling bonding configurations of doped nitrogen atoms. Sci. Rep. 6, 28330 (2016)

    Article  CAS  Google Scholar 

  76. M.I. Katsnelson, Graphene: carbon in two dimensions. Mater. Today 10(1), 20–27 (2007)

    Article  CAS  Google Scholar 

  77. Graphene makes movement easy for electrons. http://www.physorg.com/news119030362.html, posted January 08, 2008

  78. E. McCann, D.S.L. Abergel, V.I. Fal’ko, Electrons in bilayer graphene. Solid State Commun. 143(1), 110–115 (2007)

    Article  CAS  Google Scholar 

  79. O. Hod, V. Barone, J.E. Peralta, G.E. Scuseria, Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons. Nano Lett. 7(8), 2295–2299 (2007)

    Article  CAS  Google Scholar 

  80. C. Gomez-Navarro, R.T. Weitz, A.M. Bittner, M. Scolari, A. Mews, M. Burghard, K. Kern, Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 7(11), 3499–3503 (2007)

    Article  CAS  Google Scholar 

  81. W.L. Wang, S. Meng, E. Kaxiras, Graphene nanoflakes with large spin. Nano Lett. 8(1), 241–245 (2008)

    Article  CAS  Google Scholar 

  82. D.-e. Jiang, B.G. Sumpter, S. Dai, First principles study of magnetism in nanographenes. J. Chem. Phys. 127(12), 124703 (2007)

    Article  CAS  Google Scholar 

  83. J. Fernández-Rossier, J.J. Palacios, Magnetism in graphene nanoislands. Phys. Rev. Lett. 99, 177204 (2007)

    Article  CAS  Google Scholar 

  84. S.K. Sarkar, K.K. Raul, S.S. Pradhan, S. Basu, A. Nayak, et al., Magnetic properties of graphite oxide and reduced graphene oxide. Physica E 64, 78–82 (2014)

    Article  CAS  Google Scholar 

  85. A. Jabar, R. Masrour, Magnetic properties of graphene structure: a Monte Carlo simulation. J. Supercond. Nov. Magn. 29(5), 1363–1369 (2016)

    Article  CAS  Google Scholar 

  86. T. Tang, F. Liu, Y. Liu, et al., Identifying the magnetic properties of graphene oxide. Appl. Phys. Lett. 104, 123104 (2014)

    Article  CAS  Google Scholar 

  87. S. Niyogi, E. Bekyarova, M.E. Itkis, J.L. McWilliams, M.A. Hamon, R.C. Haddon, Solution properties of graphite and graphene. J. Am. Chem. Soc. 128(24), 7720–7721 (2006)

    Article  CAS  Google Scholar 

  88. K.A. Worsley, P. Ramesh, S.K. Mandal, S. Niyogi, M.E. Itkis, R.C. Haddon, Soluble graphene derived from graphite fluoride. Chem. Phys. Lett. 445(1), 51–56 (2007)

    Article  CAS  Google Scholar 

  89. S. Yu, X. Wang, R. Zhang, et al., Complex roles of solution chemistry on graphene oxide coagulation onto titanium dioxide: batch experiments, spectroscopy analysis and theoretical calculation. Sci. Rep. 7, 39625 (2017)

    Article  CAS  Google Scholar 

  90. L. Yang, M.L. Cohen, S.G. Louie, Excitonic effects in the optical spectra of graphene nanoribbons. Nano Lett. 7(10), 3112–3115 (2007)

    Article  CAS  Google Scholar 

  91. I. Jung, M. Pelton, R. Piner, D.A. Dikin, S. Stankovich, S. Watcharotone, M. Hausner, R.S. Ruoff, Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett. 7(12), 3569–3575 (2007)

    Article  CAS  Google Scholar 

  92. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett. 7(2), 238–242 (2007)

    Article  CAS  Google Scholar 

  93. I. Calizo, F. Miao, W. Bao, C.N. Lau, A.A. Balandin, Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene-based devices. Appl. Phys. Lett. 91, 071913 (2007)

    Article  CAS  Google Scholar 

  94. I. Calizo, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett. 7(9), 2645–2649 (2007)

    Article  CAS  Google Scholar 

  95. D.Y. Usachov, V.Y. Davydov, V.S. Levitskii, et al., Raman spectroscopy of lattice-matched graphene on strongly interacting metal surfaces. ACS Nano 11(6), 6336–6345 (2017)

    Article  CAS  Google Scholar 

  96. S. Reichardt, L. Wirtz, Raman Spectroscopy of Graphene. 2017, arXiv:1703.06909, p. 25.

    Google Scholar 

  97. C. Ferrante, A. Virga, L. Benfatto et al. Raman spectroscopy of graphene under ultrafast laser excitation. 2017, arXiv:1704.00186, p .18.

    Google Scholar 

  98. I. Calizo, W. Bao, F. Miao, C.N. Lau, A.A. Balandin, The effect of substrates on the Raman spectrum of graphene: graphene- on-sapphire and graphene-on-glass. Appl. Phys. Lett. 91, 201904 (2007)

    Article  CAS  Google Scholar 

  99. S.A. Yerişkin, M. Balbaşı, İ. Orak, Frequency dependent electrical characteristics and origin of anomalous capacitance–voltage (C–V) peak in Au/(graphene-doped PVA)/n-Si capacitors. J. Mater. Sci. Mater. Electron. V28(11), 7819–7826 (2017)

    Article  CAS  Google Scholar 

  100. G. Luongo, F. Giubileo, L. Genovese, et al., I-V and C-V characterization of a high-responsivity graphene/silicon photodiode with embedded MOS capacitor. Nanomaterials (Basel) 7(7), 158 (2017)

    Article  CAS  Google Scholar 

  101. J. Guo, Y. Yoon, Y. Ouyang, Gate electrostatics and quantum capacitance of graphene nanoribbons. Nano Lett. 7(7), 1935–1940 (2007)

    Article  CAS  Google Scholar 

  102. Y.-W. Son, M.L. Cohen, S.G. Louie, Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006)

    Article  CAS  Google Scholar 

  103. Y.-W. Son, M.L. Cohen, S.G. Louie, Half-metallic graphene nanoribbons. Nature 444, 347 (2006)

    Article  CAS  Google Scholar 

  104. L. Yang, C.H. Park, Y.-W. Son, M.L. Cohen, S.G. Louie, Quasiparticle energies and band gaps of graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007)

    Article  CAS  Google Scholar 

  105. T.B. Martins, R.H. Miwa, A.J.R. da Silva, A. Fazzio, Electronic and transport properties of boron-doped graphene nanoribbons. Phys. Rev. Lett. 98(19), 196803 (2007)

    Article  CAS  Google Scholar 

  106. P. Shemella, Y. Zhang, M. Mailman, P.M. Ajayan, S.K. Nayak, Energy gaps in zero-dimensional graphene nanoribbons. Appl. Phys. Lett. 91, 042101 (2007)

    Article  CAS  Google Scholar 

  107. G. Liang, N. Neophytou, M.S. Lundstrom, D.E. Nikonov, Ballistic graphene nanoribbon metal-oxide-semiconductor field-effect transistors: a full real-space quantum transport simulation. J. Appl. Phys. 102, 054307 (2007)

    Article  CAS  Google Scholar 

  108. D.-e. Jiang, B.G. Sumpter, S. Dai, Unique chemical reactivity of a graphene nanoribbon’s zigzag edge. J. Chem. Phys. 126(13), 134701 (2007)

    Article  CAS  Google Scholar 

  109. V. Ryzhii, Terahertz plasma waves in gated graphene heterostructures. Jpn. J. Appl. Phys. 45, L923 (2006). https://doi.org/10.1143/JJAP.45.L923

    Article  CAS  Google Scholar 

  110. V. Ryzhii, A. Satou, T. Otsuji, Plasma waves in two-dimensional electron-hole system in gated graphene heterostructures. J. Appl. Phys. 101, 024509 (2007). https://doi.org/10.1063/1.2426904

    Article  CAS  Google Scholar 

  111. K. Novoselov, S.D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. PNAS 102, 10451 (2005). https://doi.org/10.1073/pnas.0502848102

    Article  CAS  Google Scholar 

  112. H.C. Lee, W.-W. Liu, S.-P. Chai, et al., Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. RSC Adv. 7, 15644–15693 (2017)

    Article  CAS  Google Scholar 

  113. N. Woehrl, O. Ochedowski, S. Gottlieb, K. Shibasaki, S. Schulz, Plasma-enhanced chemical vapor deposition of graphene on copper substrates. AIP Adv. 4, 047128 (2014)

    Article  CAS  Google Scholar 

  114. P.R. Somani, S.P. Somani, M. Umeno, Planer nano-graphenes from camphor by CVD. Chem. Phys. Lett. 430(1), 56–59 (2006)

    Article  CAS  Google Scholar 

  115. E. Rollings, G.H. Gweon, S.Y. Zhou, B.S. Mun, J.L. McChesney, B.S. Hussain, A.V. Fedorov, P.N. First, W.A. de Heer, A. Lanzara, Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate. J. Phys. Chem. Sol. 67(9), 2172–2177 (2006)

    Article  CAS  Google Scholar 

  116. B.Z. Jang, W.C Huang, Nano-scaled graphene plates. U.S. Patent 7071258, 2006. http://www.freepatentsonline.com/7071258.html

  117. Y. Zhang, L. Zhang, C. Zhou, Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46(10), 2329–2339 (2013)

    Article  CAS  Google Scholar 

  118. S. Cai, X. Liu, J. Huang, Z. Liu, Feasibility of polyethylene film as both supporting material for transfer and target substrate for flexible strain sensor of CVD graphene grown on Cu foil. RSC Adv. 7, 48333–48340 (2017)

    Article  CAS  Google Scholar 

  119. T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Controlling the electronic structure of bilayer graphene. Science 313(5789), 951–954 (2006)

    Article  CAS  Google Scholar 

  120. W.A. de Heer, C. Berger, X. Wu, P.N. First, E.H. Conrad, T. Li, M. Sprinkle, J. Hass, M.L. Sadowski, M. Potemski, G. Martinez, Epitaxial graphene. Solid State Commun. 143(1), 92–100 (2007)

    Article  CAS  Google Scholar 

  121. C. Riedl, U. Starke, Structural properties of the graphene-SiC(0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces. Phys. Rev. B 76, 245406 (2007)

    Article  CAS  Google Scholar 

  122. J. Hass, R. Feng, T. Li, X. Li, Z. Zong, W.A. de Heer, P.N. First, E.H. Conrad, C.A. Jeffrey, C. Berger, Highly ordered graphene for two dimensional electronics. Appl. Phys. Lett. 89, 143106 (2006)

    Article  CAS  Google Scholar 

  123. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191 (2006). https://doi.org/10.1126/science.1125925

    Article  CAS  Google Scholar 

  124. Z. Osvath, A.L. Darabont, P. Nemes-Incze, E. Horvath, Z.E. Horvath, L.P. Biro, Graphene layers from thermal oxidation of exfoliated graphite plates. Carbon 45(15), 3022–3026 (2007)

    Article  CAS  Google Scholar 

  125. S. Eigler, M. Enzelberger-Heim, S. Grimm, et al., Wet chemical synthesis of graphene. Adv. Mater. 25(26), 3583–3587 (2013)

    Article  CAS  Google Scholar 

  126. M. Antonietti, K. Müllen (eds.), Chemical Synthesis and Applications of Graphene and Carbon Materials (Wiley-VCH, Weinheim, 2017), p. 256

    Google Scholar 

  127. W. Wei, B. Hu, F. Jin, et al., Potassium-chemical synthesis of 3D graphene from CO2 and its excellent performance in HTM-free perovskite solar cells. J. Mater. Chem. A 5, 7749–7752 (2017)

    Article  CAS  Google Scholar 

  128. Z. Zhu, D. Su, G. Weinberg, R. Schlogl, Supermolecular self-assembly of graphene sheets: formation of tube-in-tube nanostructures. Nano Lett. 4(11), 2255–2259 (2004)

    Article  CAS  Google Scholar 

  129. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)

    Article  CAS  Google Scholar 

  130. H. Cui, Z. Zhou, D. Jia, Heteroatom-doped graphene as electrocatalysts for air cathodes. Mater. Horiz. 4, 7–19 (2017)

    Article  CAS  Google Scholar 

  131. J. Duan, S. Chen, M. Jaroniec, S.Z. Qiao, Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes. ACS Catal. 5(9), 5207–5234 (2015)

    Article  CAS  Google Scholar 

  132. D.J. Gregg, E. Bothe, P. Höfer, P. Passaniti, S.M. Draper, Extending the nitrogen-heterosuperbenzene family: the spectroscopic, redox, and photophysical properties of “half-cyclized” N-1/2HSB and its Ru(II) complex. Inorg. Chem. 44(16), 5654–5660 (2005)

    Article  CAS  Google Scholar 

  133. M.S. Draper, D.J. Gregg, E.R. Schofield, W.R. Browne, M. Duati, J.G. Vos, P. Passaniti, J. Am. Chem. Soc. 126, 8694 (2004)

    Article  CAS  Google Scholar 

  134. S. Gilje, S. Han, M. Wang, K.L. Wang, R.B. Kaner, A chemical route to graphene for device applications. Nano Lett. 7(11), 3394–3398 (2007)

    Article  CAS  Google Scholar 

  135. M.J. McAllister, J.-L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M. Herrera-Alonso, D.L. Milius, R. Car, R.K. Prud'homme, I.A. Aksay, Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19(18), 4396–4404 (2007)

    Article  CAS  Google Scholar 

  136. H.C. Schniepp, J.-L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud'homme, R. Car, D.A. Saville, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110(17), 8535–8539 (2006)

    Article  CAS  Google Scholar 

  137. S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44(15), 3342–3347 (2006)

    Article  CAS  Google Scholar 

  138. L.M. Viculis, J.J. Mack, R.B. Kaner, A chemical route to carbon nanoscrolls. Science 299, 1361 (2003)

    Article  CAS  Google Scholar 

  139. Y.W. Son, Physics of graphene and graphene nanoribbons. http://icpr.or.kr/file/vod/2007/yonsei/20071205.pdf. Posted on 05 Dec 2007

  140. Y. Sun, J. Tang, K. Zhang, et al., Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries. Nanoscale 9, 2585–2595 (2017)

    Article  CAS  Google Scholar 

  141. A. Lerf, H. He, M. Forster, J. Klinowski, Structure of graphite oxide revisited. J. Phys. Chem. B 102, 4477–4482 (1998)

    Article  CAS  Google Scholar 

  142. I.A. Aksay, Developing fundamental developing fundamental insights pertinent to the design and processing of multifunctional nanocomposites. http://www.wtec.org/nb-france-us/aksay_i/aksay-modified.pdf. Posted on 02 Mar 2006

  143. A.N. Sidorov, M.M. Yazdanpanah, R. Jalilian, P.J. Ouseph, R.W. Cohn, G.U. Sumanasekera, Electrostatic deposition of graphene. Nanotechnology 18(13), 135301 (2007)

    Article  CAS  Google Scholar 

  144. B.H. Northrop, J.E. Norton, K.N. Houk, On the mechanism of peripentacene formation from pentacene: computational studies of a prototype for graphene formation from smaller acenes. J. Am. Chem. Soc. 129(20), 6536–6546 (2007)

    Article  CAS  Google Scholar 

  145. A.M. Dimiev, S. Eigler, 2. Mechanism of formation and chemical structure of graphene oxide, in Graphene Oxide: Fundamentals and Applications, (John Wiley & Sons, Ltd, Chichester, 2016)

    Chapter  Google Scholar 

  146. H. Cui, J. Zheng, P. Yang, et al., Understanding the formation mechanism of graphene frameworks synthesized by solvothermal and rapid pyrolytic processes based on an alcohol–sodium hydroxide system. ACS Appl. Mater. Interfaces 7(21), 11230–11238 (2015)

    Article  CAS  Google Scholar 

  147. A.M. Dimiev, J.M. Tour, Mechanism of graphene oxide formation. ACS Nano 8(3), 3060–3068 (2014)

    Article  CAS  Google Scholar 

  148. R. Whitesides, A.C. Kollias, D. Domin, W.A. Lester, M. Frenklach, Graphene layer growth: collision of migrating five-member rings. Proc. Combust. Inst. 31(1), 539–546 (2007)

    Article  CAS  Google Scholar 

  149. Y. Carissan, W. Klopper, Growing graphene sheets from reactions with methyl radicals: a quantum chemical study. Chemphyschem 7(8), 1770–1778 (2006)

    Article  CAS  Google Scholar 

  150. M. Frenklach, J. Ping, On the role of surface migration in the growth and structure of graphene layers. Carbon 42(7), 1209–1212 (2004)

    Article  CAS  Google Scholar 

  151. E. Cappelli, S. Orlando, V. Morandi, M. Servidori, C. Scilletta, Nano-graphene growth and texturing by Nd:YAG pulsed laser ablation of graphite on silicon. J. Phys. Conf. Ser. 59(1), 616–624 (2007)

    Article  CAS  Google Scholar 

  152. G.R. Kiran, B. Chandu, S.G. Acharyya, et al., One-step synthesis of bulk quantities of graphene from graphite by femtosecond laser ablation under ambient conditions. Philos. Mag. Lett., 1–6 (2017). https://doi.org/10.1080/09500839.2017.1320437

    Article  CAS  Google Scholar 

  153. Y. Miura, H. Kasai, W. Diño, H. Nakanishi, T. Sugimoto, First principles studies for the dissociative adsorption of H2 on graphene. J. Appl. Phys. 93, 3395 (2003)

    Article  CAS  Google Scholar 

  154. R. Nagar, B.P. Vinayan, S.S. Samantaray, S. Ramaprabhu, Recent advances in hydrogen storage using catalytically and chemically modified graphene nanocomposites. J. Mater. Chem. A 5, 22897–22912 (2017)

    Article  CAS  Google Scholar 

  155. Y. Hao, X. Zhao, X. Song, H. Li, X. Zhu, C. Hao, The interaction between graphene and oxygen atom. Open Phys. 14, 690–694 (2016)

    Article  CAS  Google Scholar 

  156. K. Takeuchi, S. Yamamoto, Y. Hamamoto, et al., Adsorption of CO2 on graphene: a combined TPD, XPS, and vdW-DF study. J. Phys. Chem. C 121(5), 2807–2814 (2017)

    Article  CAS  Google Scholar 

  157. B. Kerkeni, D.C. Clary, Quantum dynamics study of the Langmuir–Hinshelwood H + H recombination mechanism and H2 formation on a graphene model surface. Chem. Phys. 338(1), 1–10 (2007)

    Article  CAS  Google Scholar 

  158. L.A. Chernozatonskii, P.B. Sorokin, Two-dimensional semiconducting nanostructures based on single graphene sheets with lines of adsorbed hydrogen atoms. Appl. Phys. Lett. 91, 183103 (2007)

    Article  CAS  Google Scholar 

  159. Y. Okamoto, Y. Miyamoto, Ab Initio investigation of physisorption of molecular hydrogen on planar and curved graphenes. J. Phys. Chem. B 105(17), 3470–3474 (2001)

    Article  CAS  Google Scholar 

  160. I. Cabria, M.J. López, J.A. Alonso, Enhancement of hydrogen physisorption on graphene and carbon nanotubes by Li doping. J. Chem. Phys. 123, 204721 (2005)

    Article  CAS  Google Scholar 

  161. V.G. Zavodinsky, E.A. Mikhailenko, Quantum-mechanics simulation of carbon nanoclusters and their activities in reactions with molecular oxygen. Comput. Mater. Sci. 36(1), 159–165 (2006)

    Article  CAS  Google Scholar 

  162. F. Cataldo, Ozone reaction with carbon nanostructures. 2: The reaction of ozone with milled graphite and different carbon black grades. J. Nanosci. Nanotech. 7(4–5), 1446–1454 (2007)

    Article  CAS  Google Scholar 

  163. M.T. Hasan, B.J. Senger, C. Ryan, et al., Optical band gap alteration of graphene oxide via ozone treatment. Sci. Rep. 7, 6411 (2017)

    Article  CAS  Google Scholar 

  164. P.A. Gauden, M. Wisniewski, CO2 sorption on substituted carbon materials. Appl. Surf. Sci. 253(13), 5726–5731 (2007)

    Article  CAS  Google Scholar 

  165. R. Strzelczyk, C.E. Giusca, F. Perrozzi, et al., Role of substrate on interaction of water molecules with graphene oxide and reduced graphene oxide. Carbon 122, 168–175 (2017)

    Article  CAS  Google Scholar 

  166. E. Rangel Cortes, L.F. Magana Solıs, J.S. Arellano, Interaction of a water molecule with a graphene layer. Rev. Mex. Fís. S59(1), 118–125 (2013)

    Google Scholar 

  167. M.K. Kostov, E.E. Santiso, A.M. George, K.E. Gubbins, M.B. Nardelli, Dissociation of water on defective carbon substrates. Phys. Rev. Lett. 95(13), 136105 (2005)

    Article  CAS  Google Scholar 

  168. N.A. Cordero, J.A. Alonso, The interaction of sulfuric acid with graphene and formation of adsorbed crystals. Nanotechnology 18(48), 485705 (2007)

    Article  CAS  Google Scholar 

  169. D.-E. Jiang, B.G. Sumpter, S. Dai, How do aryl groups attach to a graphene sheet? J. Phys. Chem. B 110(47), 23628–23632 (2006)

    Article  CAS  Google Scholar 

  170. P.A. Denis, On the addition of aryl radicals to graphene: the importance of nonbonded interactions. Chem. Phys. Chem. 14(14), 3271–3277 (2013)

    Article  CAS  Google Scholar 

  171. X. Liu, C.-Z. Wang, M. Hupalo, et al., Metals on graphene: interactions, growth morphology, and thermal stability. Crystals 3, 79–111 (2013)

    Article  CAS  Google Scholar 

  172. A.R. Cadore, E. Mania, E.A. de Morais, et al., Metal-graphene heterojunction modulation via H2 interaction. Appl. Phys. Lett. 109, 033109 (2016)

    Article  CAS  Google Scholar 

  173. M. Manolata Devi, S.R. Sahu, P. Mukherjee, P. Sen, K. Biswas, Graphene–metal nanoparticle hybrids: electronic interaction between graphene and nanoparticles. Trans. Indian Inst. Metals 69(4), 839–844 (2016)

    Article  CAS  Google Scholar 

  174. J. Lee, K.S. Novoselov, H.S. Shin, Interaction between metal and graphene: dependence on the layer number of graphene. ACS Nano. 5(1), 608–612 (2011)

    Article  CAS  Google Scholar 

  175. Y. Okamoto, Density-functional calculations of icosahedral M13 (M=Pt and Au) clusters on graphene sheets and flakes. Chem. Phys. Lett. 420(4), 382–386 (2006)

    Article  CAS  Google Scholar 

  176. M. Machida, T. Mochimaru, H. Tatsumoto, Lead(II) adsorption onto the graphene layer of carbonaceous materials in aqueous solution. Carbon 44(13), 2681–2688 (2006)

    Article  CAS  Google Scholar 

  177. S. Masatsugu, I.S. Suzuki, W. Jürgen, Superconductivity and magnetic short-range order in the system with a Pd sheet sandwiched between graphene sheets. J. Phys.: Condens. Matter 16(6), 903–918 (2004)

    Google Scholar 

  178. P.R. Unwin, A.G. Güell, G. Zhang, Nanoscale electrochemistry of sp(2) carbon materials: from graphite and graphene to carbon nanotubes. Acc. Chem. Res. 49(9), 2041–2048 (2016)

    Article  CAS  Google Scholar 

  179. J.-g. Zhao, B.-y. Xing, H. Yang, et al., Growth of carbon nanotubes on graphene by chemical vapor deposition. New Carbon Mater. 31(1), 31–36 (2016)

    Article  Google Scholar 

  180. D. Yu, F. Liu, Synthesis of carbon nanotubes by rolling up patterned graphene nanoribbons using selective atomic adsorption. Nano Lett. 7(10), 3046–3050 (2007)

    Article  CAS  Google Scholar 

  181. A.J. Du, S.C. Smith, G.Q. Lu, Formation of single-walled carbon nanotube via the interaction of graphene nanoribbons: ab initio density functional calculations. Nano Lett. 7(11), 3349–3354 (2007)

    Article  CAS  Google Scholar 

  182. M. Nagatsu, T. Yoshida, M. Mesko, A. Ogino, T. Matsuda, T. Tanaka, H. Tatsuoka, K. Murakami, Narrow multi-walled carbon nanotubes produced by chemical vapor deposition using graphene layer encapsulated catalytic metal particles. Carbon 44(15), 3336–3341 (2006)

    Article  CAS  Google Scholar 

  183. S. Enouz, O. Stéphan, J.-L. Cochon, C. Colliex, A. Loiseau, C-BN patterned single-walled nanotubes synthesized by laser vaporization. Nano Lett. 7(7), 1856–1862 (2007)

    Article  CAS  Google Scholar 

  184. N.A. Koratkar, Graphene in Composite Materials: Synthesis, Characterization and Applications (DEStech Publications, Inc., Lancaster, 2013), p. 198

    Google Scholar 

  185. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.B.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006)

    Article  CAS  Google Scholar 

  186. X. Gong, G. Liu, Y. Li, et al., Functionalized-graphene composites: fabrication and applications in sustainable energy and environment. Chem. Mater. 28(22), 8082–8118 (2016)

    Article  CAS  Google Scholar 

  187. H. Zhang, Y. Yuan, Y. Sun, et al., An ionic liquid-magnetic graphene composite for magnet dispersive solid-phase extraction of triazine herbicides in surface water followed by high performance liquid chromatography. Analyst 143, 175–181 (2018)

    Article  CAS  Google Scholar 

  188. B.C. Marin, J. Liu, E. Aklile, et al., SERS-enhanced piezoplasmonic graphene composite for biological and structural strain mapping. Nanoscale 9, 1292–1298 (2017)

    Article  CAS  Google Scholar 

  189. S. Watcharotone, D.A. Dikin, S. Stankovich, R. Piner, I. Jung, G.H.B. Dommett, G. Evmenenko, S.-E. Wu, S.-F. Chen, C.-P. Liu, S.T. Nguyen, R.S. Ruoff, Graphene-silica composite thin films as transparent conductors. Nano Lett. 7(7), 1888–1892 (2007)

    Article  CAS  Google Scholar 

  190. C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108(52), 19912–19916 (2004)

    Article  CAS  Google Scholar 

  191. K. Novoselov, Graphene: mind the gap. Nat. Mater. 6(10), 720–721 (2007)

    Article  CAS  Google Scholar 

  192. D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.B.T. Nguyen, R.S. Ruoff, Preparation and characterization of graphene oxide paper. Nature 448(7152), 457–460 (2007)

    Article  CAS  Google Scholar 

  193. Y. Huang, M. Zhu, W. Meng, et al., Robust reduced graphene oxide paper fabricated with a household non-stick frying pan: a large-area freestanding flexible substrate for supercapacitors. RSC Adv. 5, 33981–33989 (2015)

    Article  CAS  Google Scholar 

  194. J. Gao, C. Liu, L. Miao, X. Wang, Y. Chen, Free-standing reduced graphene oxide paper with high electrical conductivity. J. Electron. Mater. 45(3), 1290–1295 (2016)

    Article  CAS  Google Scholar 

  195. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  CAS  Google Scholar 

  196. Building blocks for integrated graphene circuits. Nano Lett. 7(11), 3253–3259 (2007)

    Article  CAS  Google Scholar 

  197. H. Raza (ed.), Graphene Nanoelectronics: Metrology, Synthesis, Properties and Applications (Springer, Berlin, 2012), p. 586

    Google Scholar 

  198. X. Liang, Z. Fu, S.Y. Chou, D.A. Areshkin, C.T. White, Graphene transistors fabricated via transfer-printing in device active-areas on large wafer. Nano Lett. 7(12), 3840–3844 (2007)

    Article  CAS  Google Scholar 

  199. Y.G. Semenov, K.W. Kim, J.M. Zavada, Spin field effect transistor with a graphene channel. Appl. Phys. Lett. 91, 153105 (2007)

    Article  CAS  Google Scholar 

  200. Z. Chen, Y.-M. Lin, M.J. Rooks, P. Avouris, Graphene nano-ribbon electronics. Physica E 40(2), 228–232 (2007)

    Article  CAS  Google Scholar 

  201. R.C. Ordonez, C.K. Hayashi, C.M. Torres, et al., Rapid fabrication of graphene field-effect transistors with liquid-metal interconnects and electrolytic gate dielectric made of honey. Sci. Rep. 7, 10171 (2017)

    Article  CAS  Google Scholar 

  202. P. Aydogan, O. Balci, C. Kocabas, S. Suzer, et al., Monitoring the operation of a graphene transistor in an integrated circuit by XPS. Org. Electron. 37, 178–182 (2016)

    Article  CAS  Google Scholar 

  203. Q. Yan, B. Huang, J. Yu, F. Zheng, J. Zang, J. Wu, B.-L. Gu, F. Liu, W. Duan, Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping. Nano Lett. 7(6), 1469–1473 (2007)

    Article  CAS  Google Scholar 

  204. T. Jayasekera, J.W. Mintmire, Transport in multiterminal graphene nanodevices. Nanotechnology 18(42), 424033 (2007)

    Article  Google Scholar 

  205. N. Staley, H. Wang, C. Puls, J. Forster, T.N. Jackson, K. McCarthy, B. Clouser, Y. Liu, Lithography-free fabrication of graphene devices. Appl. Phys. Lett. 90, 143518 (2007)

    Article  CAS  Google Scholar 

  206. S.J. Heerema, C. Dekker, Graphene nanodevices for DNA sequencing. Nat. Nanotechnol. 11, 127–136 (2016)

    Article  CAS  Google Scholar 

  207. M. Balcioglu, B. Zafer Buyukbekar, M. Selman Yavuz, M.V. Yigit, Smart-polymer-functionalized graphene nanodevices for thermo-switch-controlled biodetection. ACS Biomater Sci. Eng. 1(1), 27–36 (2015)

    Article  CAS  Google Scholar 

  208. D. Gunlycke, D.A. Areshkin, J. Li, J.W. Mintmire, C.T. White, Graphene nanostrip digital memory device. Nano Lett. 7(12), 3608–3611 (2007)

    Article  CAS  Google Scholar 

  209. S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, F. Beltram, The optical visibility of graphene: interference colors of ultrathin graphite on SiO2. Nano Lett. 7(9), 2707–2710 (2007)

    Article  CAS  Google Scholar 

  210. P. Blake, E.W. Hill, A.H. Castro Neto, K.S. Novoselov, D. Jiang, R. Yang, T.J. Booth, A.K. Geim, Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007)

    Article  CAS  Google Scholar 

  211. X. Wang, L. Zhi, K. Mullen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008)

    Article  CAS  Google Scholar 

  212. M. Fahad Bhopal, D. Won Lee, A. ur Rehman, S. Hong Lee, Past and future of graphene/silicon heterojunction solar cells: a review. J. Mater. Chem. C 5, 10701–10714 (2017)

    Article  Google Scholar 

  213. J. Yoon, H. Sung, G. Lee, W. Cho, et al., Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy Environ. Sci. 10, 337–345 (2017)

    Article  CAS  Google Scholar 

  214. N. Park, S. Hong, G. Kim, S.-H. Jhi, Computational study of hydrogen storage characteristics of covalent-bonded graphenes. J. Am. Chem. Soc. 129(29), 8999–9003 (2007)

    Article  CAS  Google Scholar 

  215. C. Zhou, J.A. Szpunar, X. Cui, Synthesis of Ni/Graphene nanocomposite for hydrogen storage. ACS Appl. Mater. Interfaces 8(24), 15232–15241 (2016)

    Article  CAS  Google Scholar 

  216. H. Ghorbani Shiraz, O. Tavakoli, Investigation of graphene-based systems for hydrogen storage. Renew. Sust. Energ. Rev. 74, 104–109 (2017)

    Article  CAS  Google Scholar 

  217. S. Patchkovskii, J.S. Tse, S.N. Yurchenko, L. Zhechkov, T. Heine, G. Seifert, Graphene nanostructures as tunable storage media for molecular hydrogen. Proc. Natl. Acad. Sci. U. S. A. 102(30), 10439–10444 (2005)

    Article  CAS  Google Scholar 

  218. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007)

    Article  CAS  Google Scholar 

  219. C.I.L. Justino, A.R. Gomes, A.C. Freitas, Graphene based sensors and biosensors. TrAC Trends Anal. Chem. 91, 53–66 (2017)

    Article  CAS  Google Scholar 

  220. S.S. Varghese, S. Lonkar, K.K. Singh, et al., Recent advances in graphene based gas sensors. Sensors Actuators B Chem. 218, 160–183 (2015)

    Article  CAS  Google Scholar 

  221. H.S. Kang, Theoretical study of binding of metal-doped graphene sheet and carbon nanotubes with dioxin. J. Am. Chem. Soc. 127(27), 9839–9843 (2005)

    Article  CAS  Google Scholar 

  222. T.O. Wehling, K.S. Novoselov, S.V. Morozov, E.E. Vdovin, M.I. Katsnelson, A.K. Geim, A.I. Lichtenstein, Molecular doping of graphene. Nano Lett. 8(1), 173–177 (2008)

    Article  CAS  Google Scholar 

  223. M.J.F. Calvete, Future Trends for Top Materials (Bentham Science Publishers, Sharjah, 2017), p. 573

    Google Scholar 

  224. P.W. Fowler, D.E. Manolopoulos, An Atlas of Fullerenes (Dover Publications, Mineola, 2007), p. 416

    Google Scholar 

  225. F.J.M. Rietmeijer, Natural Fullerenes and Related Structures of Elemental Carbon (Springer, Dordrecht, 2006), p. 295

    Google Scholar 

  226. E. Sheka, Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonic (CRC Press, 2016), Boca Raton, FL, USA, p. 328

    Google Scholar 

  227. M. Marcaccio, F. Paolucci, Making and Exploiting Fullerenes, Graphene, and Carbon Nanotubes (Springer, 2016), New York, p. 270

    Google Scholar 

  228. J.-F. Nierengarten, Fullerenes and Other Carbon-Rich Nanostructures (Structure and Bonding) (Springer, Berlin, 2016), p. 259

    Google Scholar 

  229. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.F. Smalley, C60-buckminsterfullerene. Nature 318(6042), 162–163 (1985)

    Article  CAS  Google Scholar 

  230. A. Astefanei, O. Núñez, M.T. Galceran, Characterisation and determination of fullerenes: a critical review. Anal. Chim. Acta 882, 1–21 (2015)

    Article  CAS  Google Scholar 

  231. R. Qiao, A.P. Roberts, A.S. Mount, S.J. Klaine, P.C. Ke, Translocation of C60 and its derivatives across a lipid bilayer. Nano Lett. 7(3), 614–619 (2007)

    Article  CAS  Google Scholar 

  232. Fullerite Mineral Data. http://webmineral.com/data/Fullerite.shtml#.WzUbytJKiUk. Accessed on 28 June 2018

  233. Fullerite. https://www.sigmaaldrich.com/catalog/product/aldrich/377120?lang=es&region=MX. Accessed on 28 June 2018

  234. T.G. Schmalz, W.A. Seitz, D.J. Klein, G.E.J. Hite, Am. Chem. Soc. 110, 1113–1127 (1988)

    Article  CAS  Google Scholar 

  235. T.C. Dinadayalane, G. Narahari Sastry, Isolated pentagon rule in buckybowls: a computational study on thermodynamic stabilities and bowl-to-bowl inversion barriers. Tetrahedron. 59, 8347–8351 (2003)

    Article  CAS  Google Scholar 

  236. F. Jin, S. Yang, S.I. Troyanov, New isolated-pentagon-rule isomers of fullerene C98 captured as chloro derivatives. Inorg. Chem. 56(9), 4780–4783 (2017)

    Article  CAS  Google Scholar 

  237. A. Hirsch, Fullerenes and Related Structures (Springer, Berlin, 1999), p. 246

    Book  Google Scholar 

  238. A. Hirsch, M. Brettreich, F. Wudl, Fullerenes: chemistry and reactions (Wiley-VCH, Weinhem, 2005), p. 440

    Google Scholar 

  239. L.N. Sidorov, M.A. Yurovskaya, A.Y. Borschevskii, I.V. Trushkov, I.N. Ioffe, Fullerenes (Examen, Moscow, 2005), p. 688

    Google Scholar 

  240. F. Langa, J.-F. Nierengarten, Fullerenes: Principles and Applications (Royal Society of Chemistry, London, 2007), p. 300

    Book  Google Scholar 

  241. G. Abrasonis, M.S. Amer, R. Blanco, Z. Chen, in Fullerene Research Advances, ed. by C. N Kramer (Ed), (Nova Science Pub Inc, New York, 2007), p. 305

    Google Scholar 

  242. K. Prassides, Fullerene-Based Materials: Structures and Properties (Springer, Berlin, 2004), p. 294

    Book  Google Scholar 

  243. N.N. Valand, M.B. Patel, Fullerenes Chemistry & Its Applications (Scholars’ Press, 2015), Riga, Latvia, p. 76

    Google Scholar 

  244. K. Komatsu, Molecular surgical synthesis of H2@C60: recollections. Phil. Trans. R. Soc. A 371, 20110636 (2013)

    Article  CAS  Google Scholar 

  245. D.J. Durbin, N.L. Allan, C. Malardier-Jugroot, Molecular hydrogen storage in fullerenes – a dispersion-corrected density functional theory study. Int. J. Hydrog. Energy. 41(30), 13116–13130 (2016)

    Article  CAS  Google Scholar 

  246. O.V. Boltalina, T. Nakajima, New Fluorinated Carbons: Fundamentals and Applications: Progress in Fluorine Science Series (Elsevier, Amsterdam/Cambridge MA, 2016), p. 442

    Google Scholar 

  247. R.M. Girón, J. Marco-Martínez, S. Bellani, et al., Synthesis of modified fullerenes for oxygen reduction reactions. J. Mater. Chem. A 4, 14284–14290 (2016)

    Article  CAS  Google Scholar 

  248. A.A. Popov, Endohedral Fullerenes: Electron Transfer and Spin (Nanostructure Science and Technology) (Springer, Cham, 2017), p. 328

    Book  Google Scholar 

  249. Exohedral metallofullerenes, in Quantum-Chemical Studies on Porphyrins, Fullerenes and Carbon, ed. by O. Loboda, (Springer, Berlin, 2013), pp. 27–47

    Google Scholar 

  250. E.G. Atovmyan, A.A. Grishchuk, T.N. Fedotova, Polymerization of [60]fullerene activated with butyllithium. Russ. Chem. Bull. 60(7), 1505–1507 (2011)

    Article  CAS  Google Scholar 

  251. M.D. Tzirakis, M. Orfanopoulos, Radical reactions of fullerenes: from synthetic organic chemistry to materials science and biology. Chem. Rev. 113(7), 5262–5321 (2013)

    Article  CAS  Google Scholar 

  252. A.L. Balch, C.J. Chancellor, Fullerenes: metal complexes, in Encyclopedia of Inorganic and Bioinorganic Chemistry, (Wiley, Hoboken, 2011)

    Google Scholar 

  253. S. Fukuzumi, Nanocarbons as electron donors and acceptors in photoinduced electron-transfer reactions. ECS J. Solid State Sci. Tech. 6(6), M3055–M3061 (2017)

    Article  CAS  Google Scholar 

  254. M. Maggini, E. Menna, Addition of azomethyne ylides: fulleropyrrolidines, in Fullerenes: From Synthesis to Optoelectronic Properties. Series: Developments in Fullerene Science, Vol. 4, ed. by D. M. Guldi, N. Martin (Eds), (Springer, 2003), New York, p. 447

    Google Scholar 

  255. B.I. Kharisov, O.V. Kharissova, M. Jimenez Gomez, U. Ortiz Mendez, Recent advances in the synthesis, characterization, and applications of fulleropyrrolidines. Ind. Eng. Chem. Res. 48(2), 545–571 (2009)

    Article  CAS  Google Scholar 

  256. J.-L. Shi, X.-F. Zhang, H.-J. Wang, et al., A protocol for the preparation of 2,5-diaryl fulleropyrrolidines: thermal reaction of [60]fullerene with aromatic aldehydes and arylmethanamines. J. Org. Chem. 81(17), 7662–7674 (2016)

    Article  CAS  Google Scholar 

  257. J. Coro, M. Suárez, L.S.R. Silva, et al., Fullerene applications in fuel cells: a review. Int. J. Hydrog. Energy 41(40), 17944–17959 (2016)

    Article  CAS  Google Scholar 

  258. S. Margadonna, Fullerene-Related Materials (Springer, 2008), New York, p. 700

    Google Scholar 

  259. W. Yan, S.M. Seifermann, P. Pierratd, S. Bräse, Synthesis of highly functionalized C60 fullerene derivatives and their applications in material and life sciences. Org. Biomol. Chem. 13, 25–54 (2015)

    Article  CAS  Google Scholar 

  260. M.R. Cerón, V. Maffeis, S. Stevenson, L. Echegoyen, Endohedral fullerenes: synthesis, isolation, mono- and bis-functionalization. Inorg. Chim. Acta. 468, 16–27 (2017)

    Article  CAS  Google Scholar 

  261. G. Lalwani, B. Sitharaman, Multifunctional fullerene and metallofullerene based nanobiomaterials. NanoLIFE 3, 1342003 (2013)

    Google Scholar 

  262. M. Maruyama, S. Okada, Design of new carbon allotropes of fused small fullerenes. Phys. Status Solidi 10(11), 1620–1623 (2013)

    Article  CAS  Google Scholar 

  263. J.-J. Adjizian, A. Vlandas, J. Rio, J.-C. Charlier, C.P. Ewels, Ab initio infrared vibrational modes for neutral and charged small fullerenes (C20, C24, C26, C28, C30 and C60). Phil. Trans. R. Soc. A 374, 20150323 (2016)

    Article  CAS  Google Scholar 

  264. C.-Y. Luo, W.-Q. Huang, W. Hu, P. Peng, G.-F. Huang, Non-covalent functionalization of WS2 monolayer with small fullerenes: tuning electronic properties and photoactivity. Dalton Trans. 45, 13383–13391 (2016)

    Article  CAS  Google Scholar 

  265. R. Majidi, Electronic properties of graphyne nanotubes filled with small fullerenes: a density functional theory study. J. Comput. Electron. 15(4), 1263–1268 (2016)

    Article  CAS  Google Scholar 

  266. L.N. Sidorov, M.A. Yurovskaya, A.Y. Borshevskii, I.V. Trushkov, I.N. Ioffe, Fullerenes (Examen, Moscow, 2005), pp. 95–98

    Google Scholar 

  267. O. Ori, F. Cataldo, A. Graovac, Topological ranking of C28 fullerenes reactivity. Fullerenes, Nanotubes, Carbon Nanostruct. 17(3), 308–323 (2009)

    Article  CAS  Google Scholar 

  268. M.N. Magomedov, On the prospects of preparing fullerites from small and large fullerenes. Phys. Solid State 48(11), 2220–2225 (2006)

    Article  CAS  Google Scholar 

  269. B.L. Zhang, C.Z. Wang, K.M. Ho, C.H. Xu, C.T. Chan, The geometry of small fullerene cages: C20 to C70. J. Chem. Phys. 97(7), 5007–5011 (1992)

    Article  CAS  Google Scholar 

  270. L. Koponen, M.J. Puska, R.M. Nieminen, Photoabsorption spectra of small fullerenes and Si-heterofullerenes. J. Chem. Phys. 128(15), 154307/1–154307/7 (2008)

    Article  CAS  Google Scholar 

  271. G. Seifert, A.N. Enyashin, T. Heine, Hyperdiamond and hyperlonsdaleit: possible crystalline phases of fullerene C28. Phys. Rev. B: Condens. Matter Mater. Phys. 72(1), 012102/1–012102/4 (2005)

    Article  CAS  Google Scholar 

  272. M. Lin, Y.-N. Chiu, J. Xiao, Theoretical study for exohydrogenates of small fullerenes C28-40. J. Mol. Struct. THEOCHEM 489(2–3), 109–117 (1999)

    Article  CAS  Google Scholar 

  273. M.-F. Fan, Z. Lin, S. Yang, Closed-shell electronic requirements for small fullerene cage structures. J. Mol. Struct. THEOCHEM 337(3), 231–240 (1995)

    Article  CAS  Google Scholar 

  274. M. Randic, H.W. Kroto, D. Vukicevic, Numerical Kekulé structures of fullerenes and partitioning of π-electrons to pentagonal and hexagonal rings. J. Chem. Inf. Model. 47 897–904 (2007)

    Google Scholar 

  275. M. Ghorbani, A.R. Ashrafi, Cycle index of the symmetry group of fullerenes C24 and C150. Asian J. Chem. 19(2), 1109–1114 (2007)

    CAS  Google Scholar 

  276. A.P. Popov, I.V. Bazhin, Three-dimensional polymerized cubic phase of fullerenes C28, in Hydrogen Materials Science and Chemistry of Carbon Nanomaterials, ed by T. N. Veziroglu et al. (Eds), (Kluwer Academic Publishers, Dordrecht, 2004), pp. 329–332

    Chapter  Google Scholar 

  277. M. Maruyama, S. Okada, Elemental semiconductors of fused small fullerenes: electronic and geometric structures of C28 polymers. J. Phys. Soc. Jpn. 81, 114719 (2012). 4 pp

    Article  CAS  Google Scholar 

  278. A. Pahuja, S. Srivastava, Electronic transport properties of doped C28 fullerene. Phys. Res. Int. 2014, 872381 (2014). 7 pp

    Article  Google Scholar 

  279. H. Kroto, The isolated pentagon rule and C28. http://www.kroto.info/the-isolated-pentagon-rule-and-c28/ Accessed on 10 Jan 2018

  280. R.Q. Zhang, Y.Q. Feng, S.T. Lee, C.L. Bai, Electrical transport and electronic delocalization of small fullerenes. J. Phys. Chem. B 108(43), 16636–16641 (2004)

    Article  CAS  Google Scholar 

  281. P.W Dunk, N.K. Kaiser, C.L. Hendrickson, A.G Marshall, H.W. Kroto, Stabilization of small carbon clusters. Abstracts of Papers, 238th ACS National Meeting, Washington, DC, United States, August 16–20, 2009, INOR-223

    Google Scholar 

  282. W.-H. Lin, R.K. Mishra, Y.-T. Lin, S.-L. Lee, Computational studies of the growth mechanism of small fullerenes: a ring-stacking model. J. Chin. Chem. Soc. 50(3B), 575–582 (2003)

    Article  CAS  Google Scholar 

  283. R.K. Mishra, Y.-T. Lin, S.-L. Lee, C28 (D2): fullerene growth mechanism. Int. J. Quantum Chem. 84, 642–648 (2001)

    Article  CAS  Google Scholar 

  284. W.-H. Lin, C.-C. Tu, S.-L. Lee, Theoretical studies of growth mechanism of small fullerene Cage C24 (D6d)+. Int. J. Quantum Chem. 103(4), 355–368 (2005)

    Article  CAS  Google Scholar 

  285. J.L. Martins, F.A. Reuse, Growth and formation of fullerene clusters. Condens Matter Theor 13, 355–362 (1998)

    CAS  Google Scholar 

  286. H. Kietzmann, R. Rochow, G. Ganteför, W. Eberhardt, K. Vietze, G. Seifert, P.W. Fowler, Electronic structure of small fullerenes: evidence for the high stability of C32. Phys. Rev. Lett. 81(24), 5378–5381 (1998)

    Article  CAS  Google Scholar 

  287. A.D. Darwish, A.G. Avent, P.R. Birkett, H.W. Kroto, R. Taylor, D.R.M. Walton, Some 4-fluorophenyl derivatives of [60]fullerene; spontaneous oxidation and oxide-induced fragmentation to C58. J. Chem. Soc. Perkin Trans. 2(7), 1038–1044 (2001)

    Article  CAS  Google Scholar 

  288. T. Fan, S. Yao, C. Zhou, B. Han, J. Wu, Adsorption of a small fullerene, C28, on the Si(001)-c(2X1) surface: a density functional theory study. Wuhan Daxue Xuebao, Lixueban 53(6), 655–660 (2007)

    CAS  Google Scholar 

  289. S. Yao, C. Zhou, L. Ning, J. Wu, Z. Pi, H. Cheng, Y. Jiang, Chemisorption of C28 fullerene on c(4x4) reconstructed GaAs(001) surface: a density functional theory study. Phys. Rev. B: Condens. Matter Mater. Phys. 71(19), 195316/1–195316/7 (2005)

    Article  CAS  Google Scholar 

  290. G. Galli, A. Canning, J. Kim, Assembling small fullerenes: a molecular dynamics study. Mater. Res. Soc. Symp. Proc. 498(Covalently Bonded Disordered Thin-Film Materials), 19–30 (1998)

    CAS  Google Scholar 

  291. P. Melinon, V. Paillard, V. Dupuis, J.P. Perez, A. Perez, G. Panczer, Synthesis of diamond nanocrystallites using the low-energy cluster beam deposition; an indirect proof of small fullerene existence. Carbon 32(5), 1011–1013 (1994)

    Article  CAS  Google Scholar 

  292. K.S. Troche, V.R. Coluci, R. Rurali, D.S. Galvao, Structural and electronic properties of zigzag carbon nanotubes filled with small fullerenes. J. Phys. Condens. Matter 19(23), 236222/1–236222/9 (2007)

    Article  CAS  Google Scholar 

  293. K.S. Troche, V.R. Coluci, R. Rurali, D.S. Galvao, Doping of zigzag carbon nanotubes through the encapsulation of small fullerenes. Los Alamos Nat. Lab. Prepr. Arch. Condens. Matter, 1–17 (2006). https://arxiv.org/abs/cond-mat/0607197

  294. A. Kharlamov, G. Kharlamova, M. Bondarenko, V. Fomenko, Joint synthesis of small carbon molecules (C3-C11), quasi-fullerenes (C40, C48, C52) and their hydrides. Chem. Eng. Sci. 1(3), 32–40 (2013)

    Article  CAS  Google Scholar 

  295. F. Ben Romdhane, J.A. Rodríguez-Manzo, A. Andrieux-Ledier, F. Fossard, A. Hallal, L. Magaud, J. Coraux, A. Loiseau, F. Banhart, The formation of the smallest fullerene-like carbon cages on metal surfaces. Nanoscale 8(5), 2561–2567 (2016)

    Article  CAS  Google Scholar 

  296. D.F.T. Tuan, R.M. Pitzer, Electronic structure of Hf@C28 and its ions. 1. SCF calculations. J. Phys. Chem 99, 9762–9767 (1995)

    Article  CAS  Google Scholar 

  297. D.F.T. Tuan, R.M. Pitzer, Electronic structures of C28H4 and Hf@C28H4 and their ions. SCF calculations. J. Phys. Chem. 100, 6277–6283 (1996)

    Article  CAS  Google Scholar 

  298. A.N. Enyashin, V.V. Ivanovskaya, Y.N. Makurin, A.L. Ivanovskii, Modeling of the structure and electronic structure of condensed phases of small fullerenes C28 and Zn@C28. Phys. Solid State (Translation of Fizika Tverdogo Tela (Sankt-Peterburg)) 46(8), 1569–1573 (2004)

    CAS  Google Scholar 

  299. T. Guo, M.D. Diener, Y. Chai, M.J. Alford, R.E. Haufler, S.M. McClure, T. Ohno, J.H. Weaver, G.E. Scuseria, R.E. Smalley, Uranium stabilization of C28: a tetravalent fullerene. Science 257(5077), 1661–1664 (1992)

    Article  CAS  Google Scholar 

  300. M.V. Ryzhkov, A.L. Ivanovskii, B. Delley, Electronic structure of endohedral fullerenes An@C28 (An=Th – Md). Comput. Theor. Chem. 985, 46–52 (2012)

    Article  CAS  Google Scholar 

  301. M.R. Pederson, N. Laouini, Covalent container compound: empty, endohedral, and exohedral C28 fullerene complexes. Phys. Rev. B: Condens. Matter Mater. Phys. 48(4), 2733–2737 (1993)

    Article  CAS  Google Scholar 

  302. Y.N. Makurin, A.A. Sofronov, A.L. Ivanovskii, Electronic structure and conditions for chemical stabilization of fullerene C28. Exohedral complexes C28M4 (M = H, Cl, Br). Russ. J. Coord. Chem. 26(7), 464–469 (2000)

    CAS  Google Scholar 

  303. P.W. Fowler, T. Heine, A. Troisi, Valencies of a small fullerene: structures and energetics of C24H2m. Chem. Phys. Lett. 312(2–4), 77–84 (1999)

    Article  CAS  Google Scholar 

  304. V.V. Ivanovskaya, A.N. Enyashin, A.A. Sofronov, Y.N. Makurin, A.L. Ivanovskii, Quantum-chemical simulation of new hybrid nanostructures: small fullerenes C20 and C28 in single-walled boron-nitrogen nanotubes. Russ. J. Gen. Chem. 74(5), 713–720 (2004)

    Article  CAS  Google Scholar 

  305. K. Jackson, E. Kaxiras, M.R. Pederson, Bonding of endohedral atoms in small carbon fullerenes. J. Phys. Chem. 98(32), 7805–7810 (1994)

    Article  CAS  Google Scholar 

  306. M. Monthioux, V.L. Kuznetsov, Who should be given the credit for the discovery of carbon nanotubes? Carbon 44, 1621–1625 (2006)

    Article  CAS  Google Scholar 

  307. L.V. Radushkevich, V.M. Lukianovich, About carbon structure, formed by thermal decomposition of carbon monoxide at iron contact. Zhurn. Fiz. Khim. XXVI(1), 88–95 (1952). http://carbon.phys.msu.ru/publications/1952-radushkevich-lukyanovich.pdf. (dead link)

    Google Scholar 

  308. A. Oberlin, M. Endo, T. Koyama, Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 32(3), 335–349 (1976)

    Article  CAS  Google Scholar 

  309. M. Dresselhaus, Structure, Properties and Applications of Carbon Nanotubes. Nanostructures, Seminar Series at MIT, 2003. http://web.mit.edu/tinytech/Nanostructures/Spring2003/MDresselhaus/MDresselhaus.htm

  310. Izv. Akad, Nauk SSSR, Metals. 1982(3), 12–17; cited in http://en.wikipedia.org/wiki/Carbonnanotube

  311. S. Iijima, Helical microtubes of graphitic carbon. Nature (London) 354, 56–58 (1991)

    Article  CAS  Google Scholar 

  312. T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.L. Cheung, C.M. Lieber, Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, 94–97 (2000)

    Article  CAS  Google Scholar 

  313. S. Saito, Carbon nanotubes for next-generation electronics devices. Science 278, 77–78 (1997)

    Article  CAS  Google Scholar 

  314. W. Yang, P. Thordarson, J.J. Gooding, S.P. Ringer, F. Braet, Carbon nanotubes for biological and biomedical applications. Nanotechnology 18(41), 412001 (2007)

    Article  CAS  Google Scholar 

  315. H.F. Wei, G.H. Hsiue, C.Y. Liu, Surface modification of multi-walled carbon nanotubes by a Sol–Gel reaction to increase their compatibility with PMMA resin. Compos. Sci. Technol. 67(6), 1018–1026 (2007)

    Article  CAS  Google Scholar 

  316. G.A. Rivas, M.D. Rubianes, M.C. Rodriguez, N.F. Ferreyra, G.L. Luque, M.L. Pedano, S.A. Miscoria, C. Parrado, Carbon nanotubes for electrochemical biosensing. Talanta 74(3), 291–307 (2007)

    Article  CAS  Google Scholar 

  317. M.Q. Tran, C. Tridech, A. Alfrey, A. Bismarck, M.S.P. Shaffer, Thermal oxidative cutting of multi-walled carbon nanotubes. Carbon 45(12), 2341–2350 (2007)

    Article  CAS  Google Scholar 

  318. S. Daniel, T.P. Rao, K.S. Rao, S.U. Rani, G.R.K. Naidu, H.Y. Lee, T.A. Kawai, Review of DNA functionalized/grafted carbon nanotubes and their characterization. Sensors Actuators: B. Chem. 122(2), 672–682 (2007)

    Article  CAS  Google Scholar 

  319. A.M. Shanmugharaj, J.H. Bae, K.Y. Lee, W.H. Noh, S.H. Lee, S.H. Ryu, Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and its influence on the properties of natural rubber composites. Compos. Sci. Technol. 67(9), 1813–1822 (2007)

    Article  CAS  Google Scholar 

  320. K. Fujisawa, H. Jou Kim, S. Hyeon Go, et al., A review of double-walled and triple-walled carbon nanotube synthesis and applications. Appl. Sci. 6, 109 (2016)

    Article  CAS  Google Scholar 

  321. O.V. Kharissova, B.I. Kharisov, Variations of the interlayer spacing in carbon nanotubes. RSC Adv. 4, 30807–30815 (2014)

    Article  CAS  Google Scholar 

  322. R. Zhang, Y. Zhang, Q. Zhang, H. Xie, W. Qian, F. Wei, Growth of half-meter long carbon nanotubes based on Schulz–Flory distribution. ACS Nano 7(7), 6156–6161 (2013)

    Article  CAS  Google Scholar 

  323. R. Jasti, J. Bhattacharjee, J.B. Neaton, C.R. Bertozzi, Synthesis, characterization, and theory of [9]-, [12]-, and [18]cycloparaphenylene: carbon nanohoop structures. J. Am. Chem. Soc. 130, 17646–17647 (2008)

    Article  CAS  Google Scholar 

  324. X. Zhao, Y. Liu, S. Inoue, T. Suzuki, R. Jones, Y. Ando, Smallest carbon nanotube is 3 Å in diameter. Phys. Rev. Lett. 92(12), 125502 (2004)

    Article  CAS  Google Scholar 

  325. T. Hayashi, Y.A. Kim, T. Matoba, M. Esaka, et al., Smallest freestanding single-walled carbon nanotube. Nano Lett. 3(7), 887–889 (2003)

    Article  CAS  Google Scholar 

  326. H. Sugime, S. Esconjauregui, J. Yang, L. d’Arsié, R.A. Oliver, S. Bhardwaj, C. Cepek, J. Robertson, Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports. Appl. Phys. Lett. 103(7), 073116 (2013)

    Article  CAS  Google Scholar 

  327. M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637–640 (2000)

    Article  CAS  Google Scholar 

  328. T. Kodama, M. Ohnishi, W. Park, et al., Modulation of thermal and thermoelectric transport in individual carbon nanotubes by fullerene encapsulation. Nat. Mater. 16, 892–897 (2017)

    Article  CAS  Google Scholar 

  329. H. Chu, L. Wei, R. Cui, J. Wang, Y. Li, Carbon nanotubes combined with inorganic nanomaterials: preparations and applications. Coord. Chem. Rev. 254, 1117–1134 (2010)

    Article  CAS  Google Scholar 

  330. H. Reza Barzegar, E. Gracia-Espino, A. Yan, et al., C60/Collapsed carbon nanotube hybrids: a variant of peapods. Nano Lett. 15(2), 829–834 (2015)

    Article  CAS  Google Scholar 

  331. B.W. Smith, D.E. Luzzi, Formation mechanism of fullerene peapods and coaxial tubes: a path to large scale synthesis. Chem. Phys. Lett. 321(1–2), 169–174 (2000)

    Article  CAS  Google Scholar 

  332. Strategies for the hybridization of CNTs with graphene, in Graphene-Carbon Nanotube Hybrids for Energy and Environmental Applications, ed. by W. Fan et al (Springer, Briefs in Green Chemistry for Sustainability, Singapore, 2017), pp. 21–51

    Google Scholar 

  333. C.B. Parker, A.S. Raut, B. Brown, B.R. Stoner, J.T. Glass, Three-dimensional arrays of graphenated carbon nanotubes. J. Mater. Res. 27(7), 1046–1053 (2012)

    Article  CAS  Google Scholar 

  334. Q. Liu, W. Ren, Z.-G. Chen, et al., Semiconducting properties of cup-stacked carbon nanotubes. Carbon 47(3), 731–736 (2009)

    Article  CAS  Google Scholar 

  335. Q. Liu, W. Ren, Z.-G. Chen, L. Yin, F. Li, H. Cong, H.-M. Cheng, Semiconducting properties of cup-stacked carbon nanotubes. Carbon 47(3), 731–736 (2009)

    Article  CAS  Google Scholar 

  336. O.V. Kharissova, B.I. Kharisov, Solubilization and Dispersion of Carbon Nanotubes (Springer-Nature, Cham, 2017), p. 250

    Book  Google Scholar 

  337. A.V. Krasheninnikov, Irradiation-induced phenomena in carbon nanotubes, in Chemistry of Carbon Nanotubes,ed. by V. A. Basiuk, E. V. Basiuk (Eds), (American Scientific Publishers, Stevenson Ranch, 2007), pp. 1–58

    Google Scholar 

  338. B.I. Kharisov, O.V. Kharissova, U.O. Mendez, Radiation Synthesis of Materials and Compounds (CRC Press, Boca Raton, 2013), p. 586

    Book  Google Scholar 

  339. N. Hamada, S. Sawada, A. Oshiyama, New one-dimensional conductors. - graphitic microtubules. Phys. Rev. Lett. 68(10), 1579–1581 (1992)

    Article  CAS  Google Scholar 

  340. P.J.F. Harris, Carbon Nanotubes and Related Structures (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  341. R. Saito, G. Dresslehaus, M. S. Dresselhaus (eds.), Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

    Google Scholar 

  342. S. Iijima, Carbon nanotubes: past, present, and future. Phys. B Condens. Matter 323(1–4), 1–5 (2002)

    Article  CAS  Google Scholar 

  343. H. Dai, Carbon nanotubes: opportunities and challenges. Surf. Sci. 500, 218–241 (2012)

    Article  Google Scholar 

  344. J.W.G. Wilder, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Electronic structure of atomically resolved carbon nanotubes. Nature 391(6662), 59–62 (1998)

    Article  Google Scholar 

  345. http://en.wikipedia.org/wiki/Carbon_nanotube

  346. A. Eatemadi, H. Daraee, H. Karimkhanloo, et al., Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 9(1), 393 (2014)

    Article  CAS  Google Scholar 

  347. C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M.L. de la Chapelle, S. Lefrant, R. Lee, J.E. Fischer, Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756–758 (1997)

    Article  CAS  Google Scholar 

  348. A.G. Rinzler, J. Liu, H. Dai, P. Nicolaev, C.B. Huffman, F.J. Rodríguez-Macias, P.J. Boul, A.H. Lu, D. Heyman, D.T. Colbert, R.S. Lee, J.E. Fischer, A.M. Rao, P.C. Eclund, R.E. Smalley, Large scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl. Phys. A Mater. Sci. Process. 67, 29–37 (1998)

    Article  CAS  Google Scholar 

  349. O.V. Kharissova, M. Garza Castañón, J.L. Hernández Pinero, U. Ortiz Méndez, B.I. Kharisov, Fast production method of Fe-filled carbon nanotubes. Mech. Adv. Mater. Struct. 16(1), 63–68 (2009)

    Article  CAS  Google Scholar 

  350. P. Nicolaev, M.J. Bronikowski, R.K. Bradley, F. Fohmund, D.T. Colbert, K.A. Smith, R.E. Smalley, Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313, 91–97 (1999)

    Article  Google Scholar 

  351. W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Large-scale synthesis of aligned carbon nanotubes. Science 274, 1701–1703 (1996)

    Article  CAS  Google Scholar 

  352. K. Yamagiwal, J. Kuwano, Synthesis of highly aligned carbon nanotubes by one-step liquid-phase process: effects of carbon sources on morphology of carbon nanotubes. Jpn. J. Appl. Phys. 56, 06GE05 (2017)

    Article  Google Scholar 

  353. H.S. Cheng, M.R. Shen, C.L. Mak, P.K. Lim, Liquid phase electrochemical route to carbon nanotubes at room temperature. Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, January 18-21, 2006, Zhuhai, China

    Google Scholar 

  354. A. Shawky, S. Yasuda, K. Murakoshi, Room-temperature synthesis of single-wall carbon nanotubes by an electrochemical process. Carbon 50, 4184–4191 (2012)

    Article  CAS  Google Scholar 

  355. D. Qian, E.C. Dickey, R. Andrews, T. Rantell, Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76, 2868–2870 (2000)

    Article  CAS  Google Scholar 

  356. P. Chen, X. Wu, J. Lin, K.L. Tan, High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285, 91–93 (1999)

    Article  CAS  Google Scholar 

  357. P.J. Britto, K.S.V. Santhanam, A. Rubio, J.A. Alonso, P.M. Ajayan, Improved charge transfer at carbon nanotube electrodes. Adv. Mater. 11, 154–157 (1999)

    Article  CAS  Google Scholar 

  358. W. Han, P. Redlich, F. Ernst, M. Ruehle, Synthesizing boron nitride nanotubes filled with SiC nanowires by using carbon nanotubes as templates. Appl. Phys. Lett. 75(13), 1875–1877 (1999)

    Article  CAS  Google Scholar 

  359. Y. Fan, S.B. Singer, R. Bergstrom, B.C. Regan, Probing Planck’s Law with incandescent light emission from a single carbon nanotube. Phys. Rev. Lett. 102, 187402 (2009)

    Article  CAS  Google Scholar 

  360. I.V. Zaporotskova, N.P. Boroznina, Y.N. Parkhomenko, L.V. Kozhitov, Carbon nanotubes: sensor properties. A review. Mod. Electron. Mater. 2(4), 95–105 (2016)

    Article  Google Scholar 

  361. O.V. Kharissova, L.M. Torres Martínez, B.I. Kharisov, Recent trends of reinforcement of cement with carbon nanotubes and fibers, in Advances in Carbon Nanostructures, ed. by A. M. T. Silva, S. A. C. Carabineiro (Eds), (INTECH, London, UK, 2016)

    Google Scholar 

  362. X. Qi, J. Xu, Q. Hu, et al., Metal-free carbon nanotubes: synthesis, and enhanced intrinsic microwave absorption properties. Sci. Rep. 6, 28310 (2016)

    Article  CAS  Google Scholar 

  363. M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications. Science 339(6119), 535–539 (2013)

    Article  CAS  Google Scholar 

  364. M. Chen, X. Qin, X. Qin, X. Qin, G. Zeng, Biodegradation of carbon nanotubes, graphene, and their derivatives. Trends Biotech. 35(9), 836–846 (2017)

    Article  CAS  Google Scholar 

  365. E. Munoz-Sandoval, Trends in nanoscience, nanotechnology, and carbon nanotubes: a bibliometric approach. J. Nanopart. Res. 16, 2152 (2014)

    Article  CAS  Google Scholar 

  366. https://globenewswire.com/news-release/2017/11/16/1193952/0/en/Carbon-Nanotubes-Market-to-be-worth-US-6-8-bn-by-2023-Transparency-Market-Research.html

  367. L.V. Radushkevich, B.M. Luk’yanovich, About the structure of carbon formed by the thermal decomposition of carbon oxide on the iron contact. Zh. Fiz. Khim. 26, 88–95 (1952)

    CAS  Google Scholar 

  368. C.-S. Lee (ed.), Carbon Nanofibers: Synthesis, Applications and Performance, Series: Nanotechnology Science and Technology (Nova Sci. Publishers, New York, 2018)

    Google Scholar 

  369. Y.-S. Lee, J. Sun Im. Preparation of Functionalized Nanofibers and Their Applications. Nanofibers, ed. by A. Kumar, (INTECH, 2010), London, UK, pp. 122–138

    Google Scholar 

  370. https://www.azonano.com/article.aspx?ArticleID=2885. Accessed on 30 May 2018

  371. D. Vidick, M. Herlitschke, C. Poleunis, et al., Comparison of functionalized carbon nanofibers and multi-walled carbon nanotubes as supports for Fe–Co nanoparticles. J. Mater. Chem. A 1, 2050–2063 (2013)

    Article  CAS  Google Scholar 

  372. L. Fen, N. Xie, J. Zhong, Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Materials 7, 3919–3945 (2014)

    Article  CAS  Google Scholar 

  373. J. Bovi de Oliveira, L. Müller Guerrini, S. Sizuka Oishi, L.R. de Oliveira Hein, et al., Carbon nanofibers obtained from electrospinning process. Mater. Res. Express 5, 025602 (2018)

    Article  CAS  Google Scholar 

  374. C. Liu, K. Lafdi, Fabrication and characterization of carbon nanofibers from polyacrylonitrile/pitch blends. J. Appl. Polym. Sci. 134, 45388 (2017)

    Article  CAS  Google Scholar 

  375. K.L. Klein, A.V. Melechko, T.E. McKnight, et al., Surface characterization and functionalization of carbon nanofibers. J. Appl. Phys. 103, 061301 (2008)

    Article  CAS  Google Scholar 

  376. O. Shafranska, A. Voronov, A. Kohut, X.-F. Wu, I.S. Akhatov, Polymer–metal complexes as a catalyst for the growth of carbon nanostructures. Carbon 47, 3137–3142 (2009)

    Article  CAS  Google Scholar 

  377. H. Wang, W. Wang, H. Wang, et al., High performance supercapacitor electrode materials from electrospun carbon nanofibers in situ activated by high decomposition temperature polymer. ACS Appl. Energy Mater. 1, 431–439 (2018)

    Article  CAS  Google Scholar 

  378. R. Hao, Y. Yang, H. Wang, et al., Direct chitin conversion to N-doped amorphous carbon nanofibers for high-performing full sodium-ion batteries. Nano Energy 45, 220–228 (2018)

    Article  CAS  Google Scholar 

  379. W. Zhang, Z.-Y. Wu, H.-L. Jiang, S.-H. Yu, Nanowire-directed templating synthesis of metal−organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J. Am. Chem. Soc. 136, 14385–14388 (2014)

    Article  CAS  Google Scholar 

  380. J. Shuia, C. Chen, L. Grabstanowicza, D. Zhaod, D.-J. Liu, Highly efficient nonprecious metal catalyst prepared with metal–organic framework in a continuous carbon nanofibrous network. PNAS 112(34), 10629–10634 (2015)

    Article  CAS  Google Scholar 

  381. C. Wang, C. Liu, J. Li, et al., Electrospun metal–organic framework derived hierarchical carbon nanofibers with high performance for supercapacitors. Chem. Commun. 53, 1751–1754 (2017)

    Article  CAS  Google Scholar 

  382. D.A. Bulushev, M. Zacharska, A.S. Lisitsyn, et al., Single atoms of Pt-group metals stabilized by N‑doped carbon nanofibers for efficient hydrogen production from formic acid. ACS Catal. 6, 3442–3451 (2016)

    Article  CAS  Google Scholar 

  383. N. Thi Xuyen, H. Kyung Jeong, G. Kim, et al., Hydrolysis-induced immobilization of Pt(acac)2 on polyimide-based carbon nanofiber mat and formation of Pt nanoparticles. J. Mater. Chem. 19, 1283–1288 (2009)

    Article  CAS  Google Scholar 

  384. N. Isoaho, S. Sainio, N. Wester, et al., Pt-grown carbon nanofibers for detection of hydrogen peroxide. RSC Adv. 8, 12742–12751 (2018)

    Article  CAS  Google Scholar 

  385. H. Lu, W. Fan, Y. Huang, T. Liu, Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-pH hydrogen evolution electrocatalysts. Nano Res. 11(3), 1274–1284 (2018)

    Article  CAS  Google Scholar 

  386. Z.-D. Yang, Z.-W. Chang, Q. Zhang, K. Huang, X.-B. Zhang, Decorating carbon nanofibers with Mo2C nanoparticles towards hierarchically porous and highly catalytic cathode for high-performance Li-O2 batteries. Sci. Bull. 63, 433–440 (2018)

    Article  CAS  Google Scholar 

  387. A. Jagadale, X. Zhou, D. Blaisdell, S. Yang, Carbon nanofibers (CNFs) supported cobalt- nickel sulfide (CoNi2S4) nanoparticles hybrid anode for high performance lithium ion capacitor. Sci. Rep. 8, 1602 (2018)

    Article  CAS  Google Scholar 

  388. Z. Said, A. Allagui, M. Ali Abdelkareem, H. Alawadhi, K. Elsaid, Acid-functionalized carbon nanofibers for high stability, thermoelectrical and electrochemical properties of nanofluids. J. Colloid Interface Sci. 520, 50–57 (2018)

    Article  CAS  Google Scholar 

  389. B. Zhou, W. Chen, Preparation and catalytic activity of carbon nanofibers anchored metallophthalocyanine in decomposing acid orange 7. Materials 7, 1370–1383 (2014)

    Article  CAS  Google Scholar 

  390. J. Cai, W. Li, P. Zhao, J. Yu, Z. Yang, Low-cost and high-performance electrospun carbon nanofiber film anodes. Int. J. Electrochem. Sci. 13, 2934–2944 (2018)

    Article  CAS  Google Scholar 

  391. M. Pingot, B. Szadkowski, M. Zaborski, Effect of carbon nanofibers on mechanical and electrical behaviors of acrylonitrile‐butadiene rubber composites. Polym. Adv. Technol. 29, 1661–1669 (2018)

    Article  CAS  Google Scholar 

  392. B. Kumar, M. Asadi, D. Pisasale, et al., Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat. Commun. 4, 2819 (2013)

    Article  CAS  Google Scholar 

  393. Nanocarbon studies in Russia: from fullerenes to nanotubes and nanodiamonds. A. Ya. Vul’ and V. I. Sokolov. Nanotechnol. Russ., 2009, 4, 7–8, 397–414

    Google Scholar 

  394. O.A. Shenderova, V.V. Zhirnov, D.W. Brenner, Carbon nanostructures. Crit. Rev. Solid State Mater. Sci. 27(3–4), 227–356 (2002)

    Article  CAS  Google Scholar 

  395. V.V. Danilenko, On the history of the discovery of nanodiamond synthesis. Phys. Solid State 46(4), 595–599 (2004)

    Article  CAS  Google Scholar 

  396. M. Castellino, Nanocrystalline Diamonds: Study and Characterization of Diamond Surface for Biosensoring Applications (LAP LAMBERT Academic Publishing, 2011), Riga, Latvia, p. 196

    Google Scholar 

  397. O.A. Shenderova, D.M. Gruen, Ultrananocrystalline Diamond: Synthesis, Properties and Applications (Micro and Nano Technologies), 2nd edn. (William Andrew, San Diego, 2012), p. 584

    Google Scholar 

  398. O.A. Williams, M. Nesladek, M. Daenen, S. Michaelson, A. Hoffman, E. Osawa, K. Haenen, R.B. Jackman, Growth, electronic properties and applications of nanodiamond. Diam. Relat. Mater. 17(7–10), 1080–1088 (2008)

    Article  CAS  Google Scholar 

  399. G.R. Huss, Meteoritic nanodiamonds: messengers from the stars. Elements 1(2), 97–100 (2005)

    Article  CAS  Google Scholar 

  400. A.P. Jones, L.B. d’Hendecourt, Interstellar nanodiamonds. Astron. Soc. Pac. Conf. Ser. 309, 589–601 (2004)

    CAS  Google Scholar 

  401. V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11–23 (2012)

    Article  CAS  Google Scholar 

  402. D. Ho, C.-H. K. Wang, E. K.-H. Chow (eds.), Nanodiamonds: the intersection of nanotechnology, drug development, and personalized medicine. Sci. Adv. 1, e1500439 (2015). 14 pp

    Google Scholar 

  403. M. Ullah, A. Kausar, M. Siddiq, M. Subhan, M. Abid Zia, Reinforcing effects of modified nanodiamonds on the physical properties of polymer-based nanocomposites: a review. Polym.-Plast. Technol. Eng. 54(8), 861–879 (2015)

    Article  CAS  Google Scholar 

  404. A. Shakun, J. Vuorinen, M. Hoikkanen, M. Poikelispää, A. Das, Hard nanodiamonds in soft rubbers: past, present and future – a review. Compos. A: Appl. Sci. Manuf. 64, 49–69 (2014)

    Article  CAS  Google Scholar 

  405. M. Valinhos Barcelos, G. Rodrigues de Almeida Neto, F. Moreira Almeida, R. Jesus Sánchez Rodríguez, J.G. Cabrera Gomez, Thermo-mechanical properties of P(HB-HV) nanocomposites reinforced by nanodiamonds. Mat. Res. 20(2) (2017). https://doi.org/10.1590/1980-5373-mr-2017-0077

    Article  Google Scholar 

  406. A. Krueger, D. Lang, Functionality is key: recent progress in the surface modification of nanodiamond. Adv. Funct. Mater. 22(5), 890–906 (2012)

    Article  CAS  Google Scholar 

  407. R. Basu, N. Skaggs, S. Shalov, P. Brereton, Evidence of nanodiamond-self-assembly in a liquid crystal, and the consequent impacts on the liquid crystal properties. AIP Adv. 7, 075008 (2017)

    Article  CAS  Google Scholar 

  408. S.Y. Ong, M. Chipaux, A. Nagl, R. Schirhagl, Shape and crystallographic orientation of nanodiamonds for quantum sensing. Phys. Chem. Chem. Phys. 19, 10748–10752 (2017)

    Article  CAS  Google Scholar 

  409. A.P. Hopper, J.M. Dugan, A.A. Gill, O.J.L. Fox, P.W. May, J.W. Haycock, F. Claeyssens, Amine functionalized nanodiamond promotes cellular adhesion, proliferation and neurite outgrowth. Biomed. Mater. 9, 045009 (2014). (11 pp)

    Article  CAS  Google Scholar 

  410. K. Turcheniuk, V.N. Mochalin, Biomedical applications of nanodiamond. Nanotechnology 28(25) (2017). http://iopscience.iop.org/article/10.1088/1361-6528/aa6ae4/pdf

    Article  CAS  Google Scholar 

  411. D.E.J. Waddington, M. Sarracanie, H. Zhang, et al., Nanodiamond-enhanced MRI via in situ hyperpolarization. Nat. Comm. 8, 15118 (2017)

    Article  Google Scholar 

  412. R.J. Edgington, A. Thalhammer, J.O. Welch, A. Bongrain, P. Bergonzo, E. Scorsone, R.B. Jackman, R. Schoepfer, Patterned neuronal networks using nanodiamonds and the effect of varying nanodiamond properties on neuronal adhesion and outgrowth. J. Neural Eng. 10, 056022 (2013). (9 pp)

    Article  CAS  Google Scholar 

  413. G. Rodrigues de Almeida Neto, M. Valinhos Barcelos, R.J. Sánchez Rodríguez, J.G. Cabrera Gomez, Influence of encapsulated nanodiamond dispersion on P(3HB) biocomposites properties. Mater. Res. 20(3), 768–774 (2017)

    Article  Google Scholar 

  414. A. Pentecost, C.E. Witherel, Y. Gogotsi, K. Spiller, Anti-inflammatory effects of octadecylamine-functionalized nanodiamond on primary human macrophages. Biomater. Sci. 5, 2131–2143 (2017)

    Article  CAS  Google Scholar 

  415. J. Giammarco, V.N. Mochalin, J. Haeckel, Y. Gogotsi, The adsorption of tetracycline and vancomycin onto nanodiamond with controlled release. J. Colloid Interface Sci. 468, 253–261 (2016)

    Article  CAS  Google Scholar 

  416. A. Knapinska, D. Tokmina-Roszyk, S. Amar, M. Tokmina-Roszyk, V.N. Mochalin, Y. Gogotsi, P. Cosme, A.C. Terentis, G.B. Fields, Solid-phase synthesis, characterization, and cellular activities of collagen-model nanodiamond-peptide conjugates. Biopolymers 104(3), 186–195 (2015)

    Article  CAS  Google Scholar 

  417. L. Zhao, Y. Nakae, H. Qin, T. Ito, T. Kimura, H. Kojima, L. Chan, N. Komatsu, Polyglycerol-functionalized nanodiamond as a platform for gene delivery: derivatization, characterization, and hybridization with DNA. Beilstein J. Org. Chem. 10, 707–713 (2014)

    Article  CAS  Google Scholar 

  418. E. Rej, T. Gaebel, T. Boele, D.E.J. Waddington, D.J. Reilly, Hyperpolarized nanodiamond with long spin-relaxation times. Nat. Commun. 6, 8459 (2015)

    Article  CAS  Google Scholar 

  419. E. Perevedentseva, Y.-C. Lin, M. Jani, C.-L. Cheng, Biomedical applications of nanodiamonds in imaging and therapy. Nanomedicine 8(12) (2013). https://www.futuremedicine.com/doi/abs/10.2217/nnm.13.183

    Article  CAS  Google Scholar 

  420. M. Montalti, A. Cantelli, G. Battistelli, Nanodiamonds and silicon quantum dots: ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging. Chem. Soc. Rev. 44, 4853–4921 (2015)

    Article  CAS  Google Scholar 

  421. C. Gupta, D. Prakash, S. Gupta, Cancer treatment with nano-diamonds. Front. Biosci. Schol. 9, 62–70 (2017)

    Article  Google Scholar 

  422. T.-K. Ryu, G.-J. Lee, C.-K. Rhee, S.-W. Choi, Cellular uptake behavior of doxorubicin-conjugated nanodiamond clusters for efficient cancer therapy. Macromol. Biosci. 15(10), 1469–1475 (2015)

    Article  CAS  Google Scholar 

  423. A. Kausar, Nanodiamond: a multitalented material for cutting edge solar cell application. Mater. Res. Innov., 1–13 (2016). https://doi.org/10.1080/14328917.2017.1317448

    Article  CAS  Google Scholar 

  424. G. Galli, Chapter 2. structure, stability and electronic properties of nanodiamonds, in Computer-Based Modeling of Novel Carbon Systems and Their Properties, Carbon Materials: Chemistry and Physics 3, ed. by L. Colombo, A. Fasolino (Eds), (Springer, Dordrecht, 2010)

    Chapter  Google Scholar 

  425. Z.H. Khan, M. Husain, Nanodiamond: synthesis, transport property, field emission and applications. Mater. Sci. Res. India 3(1a), 1–22 (2006)

    Article  CAS  Google Scholar 

  426. A. Tanaka, Tribology of carbon composites. Toraiborojisuto 54(1), 16–21 (2009)

    CAS  Google Scholar 

  427. X. Hu, M. Li, Z. Sun, Q. Wang, D. Fan, L. Chen, Research status and prospection of synthetic nanodiamonds. Guanli Gongchengban 31(2), 301–304 (2009). 317

    CAS  Google Scholar 

  428. E. Osawa, Nano carbon materials. Fullerenes and diamond. Seramikkusu 39(11), 892–909 (2004)

    CAS  Google Scholar 

  429. M.A. Quiroz Alfaro, U.A. Martinez Huitle, C.A. Martinez Huitle, Nanodiamantes. Ingenierias IX(33), 37–43 (2006)

    Google Scholar 

  430. R.A. Freitas Jr, A simple tool for positional diamond mechanosynthesis, and its method of manufacture. http://www.MolecularAssembler.com/Papers/DMSToolbuildProvPat.htm. 2003-2004

  431. R.A. Freitas Jr, How to make a nanodiamond. http://www.kurzweilai.net/articles/art0632.html?printable=1. 2006

  432. S. Kazi, A review article on nanodiamonds discussing their properties and applications. Int. J. Pharm. Sci. Invent. 3(7), 40–45 (2014)

    Google Scholar 

  433. W.W.-W. Hsiao, Y. Yung Hui, P.-C. Tsai, H.-C. Chang, Fluorescent nanodiamond: a versatile tool for long-term cell tracking, super-resolution imaging, and nanoscale temperature sensing. Acc. Chem. Res. 49(3), 400–407 (2016)

    Article  CAS  Google Scholar 

  434. H.M. Chaudhary, A.S. Duttagupta, K.R. Jadhav, S.V. Chilajwar, V.J. Kadam, Nanodiamonds as a new horizon for pharmaceutical and biomedical applications. Curr. Drug Deliv. 12(3), 271–281 (2015)

    Article  CAS  Google Scholar 

  435. D. Ho, Nanodiamonds: Applications in Biology and Nanoscale Medicine (Springer, NewYork, 2009), p. 380

    Google Scholar 

  436. O.A. Shenderova, D.M. Haber, Ultrananocrystalline Diamond: Synthesis, Properties, and Applications (William Andrew, San Diego, 2007), p. 620

    Google Scholar 

  437. H.-C. Chang, W.W.-W. Hsiao, M.-C. Su, Fluorescent Nanodiamonds, 1st edn. (Springer, New York, 2018)

    Book  Google Scholar 

  438. J.-C. Arnault, Nanodiamonds: Advanced Material Analysis, Properties and Applications (Micro and Nano Technologies) (Elsevier Science, Saint Louis, 2017), p. 504

    Google Scholar 

  439. D. Ho, Nanodiamonds: Applications in Biology and Nanoscale Medicine (Springer, New York, 2014), p. 286

    Google Scholar 

  440. O.A. Williams, Nanodiamond: RSC (Nanoscience & Nanotechnology Series) (Royal Society of Chemistry, Cambridge, 2014), p. 530

    Book  Google Scholar 

  441. A. Vul’, O. Shenderova, Detonation Nanodiamonds: Science and Applications, 1st edn. (Pan Stanford, Singapore, 2014), p. 346

    Google Scholar 

  442. C.-C. Teng, Nanodiamond Related Materials: Synthesis and Characterization (LAP LAMBERT Academic Publishing, Riga, Latvia, 2010), p. 100

    Google Scholar 

  443. V. Ligatchev, Nano- and Micro-Crystalline Diamond Films and Powders, UK ed. (Nova Science Pub Inc, New York, 2009), p. 92

    Google Scholar 

  444. S.C. Tjong, Properties of chemical vapor deposited nanocrystalline diamond and nanodiamond/amorphous carbon composite films, in Nanocomposite Thin Films and Coatings, (Imperial College Press, London, 2007), pp. 167–206

    Chapter  Google Scholar 

  445. N. Yang, H. Uetsuka, O.A. Williams, E. Osawa, N. Tokuda, C.E. Nebel, Vertically aligned diamond nanowires: fabrication, characterization, and application for DNA sensing. Phys. Status Solidi A 206(9), 2048–2056 (2009)

    Article  CAS  Google Scholar 

  446. X.-L. Kong, Nanodiamonds used as a platform for studying noncovalent interaction by MALDI-MS. Chinese J. Chem. 26(10), 1811–1815 (2008)

    Article  CAS  Google Scholar 

  447. C.J. Tang, A.J. Neves, J. Gracio, A.J.S. Fernandes, M.C. Carmo, A new chemical path for fabrication of nanocrystalline diamond films. J. Cryst. Growth 310(2), 261–265 (2008)

    Article  CAS  Google Scholar 

  448. M. Watanabe, H. Yusa, Introduction of advanced materials laboratory and some topics - from repletion of basic research to development of practical materials. Mater. Integration 15(9), 8–13 (2002)

    CAS  Google Scholar 

  449. Q. Yang, S. Yang, C. Xiao, A. Hirose, Transformation of carbon nanotubes to diamond in microwave hydrogen plasma. Mater. Lett. 61(11–12), 2208–2211 (2007)

    Article  CAS  Google Scholar 

  450. Y. Kimura, C. Kaito, Production of nanodiamond from carbon film containing silicon. J. Cryst. Growth 255(3–4), 282–285 (2003)

    Article  CAS  Google Scholar 

  451. J.A. West, J. Kennett, Nanodiamonds and diamond-like particles from carbonaceous material. PCT Int. Appl., 2009, 25 pp. WO 2009094481 A2 20090730 Application: WO 2009-US31731 20090122. Priority: US 2008–62350 20080125. CAN 151:227622 AN 2009:917817

    Google Scholar 

  452. V.Y. Dolmatov, M.V. Veretennikova, V.A. Marchukov, V.G. Sushchev, Currently available methods of industrial nanodiamond synthesis. Phys. Solid State 46(4), 611–615 (2004)

    Article  CAS  Google Scholar 

  453. D.M. Gruen, Ultrananocrystalline diamond films from fullerene precursors. In: Ōsawa E. (eds) Perspectives of Fullerene Nanotechnology. Springer, Dordrecht, 217–222 (2002)

    Google Scholar 

  454. S. Korablov, K. Yokosawa, D. Korablov, K. Tohji, N. Yamasaki, Hydrothermal formation of diamond from chlorinated organic compounds. Mater. Lett. 60(25–26), 3041–3044 (2006)

    Article  CAS  Google Scholar 

  455. Q. Chen, Z. Lou, Q. Wang, C. Chen, Recent progress in diamond synthesis. Wuli 34(3), 199–204 (2005)

    CAS  Google Scholar 

  456. K.G. Nickel, T. Kraft, Y.G. Gogotsi, Hydrothermal synthesis of diamond. Handb. Ceram. Hard Mater. 1, 374–389 (2000)

    Article  CAS  Google Scholar 

  457. B. Basavalingu, K. Byrappa, P. Madhusudan, Hydrothermal synthesis of nano-sized crystals of diamond under sub-natural conditions. J. Geol. Soc. India 69(3), 665–670 (2007)

    CAS  Google Scholar 

  458. B. Basavalingu, K. Byrappa, M. Yoshimura, P. Madhusudan, A.S. Dayananda, Hydrothermal synthesis and characterization of micro to nano sized carbon particles. J. Mater. Sci. 41(5), 1465–1469 (2006)

    Article  CAS  Google Scholar 

  459. N. Yamasaki, K. Yokosawa, S. Korablov, K. Tohjt, Synthesis of diamond particles under alkaline hydrothermal conditions. Diffus. Defect Data--Solid State Data, Pt B: Solid State Phenom. 114(High Pressure Technology of Nanomaterials), 271–276 (2006)

    Article  CAS  Google Scholar 

  460. S. Korablov, K. Yokosawa, D. Korablov, K. Tohji, N. Yamasaki, Hydrothermal formation of diamond from chlorinated organic compounds. Mater. Lett. 60(25–26), 3041–3044 (2006)

    Article  CAS  Google Scholar 

  461. J. Lu, J. Zang, Y. Wang, Y. Xu, X. Xu, Preparation and characterization of Zirconia-coated nanodiamonds as a Pt catalyst support for methanol electro-oxidation. Nanomater. (Basel). 6(12), 234 (2016)

    Article  CAS  Google Scholar 

  462. Z.-X. Wang, Q.-Y. Pan, J.-G. Hu, Z.-Z. Yong, Y.-Q. Hu, Z.-Y. Zhu, Synthesis of diamond nanocrystals by double ions (40Ar+,C2H6+) bombardment. Wuli Xuebao 56(8), 4829–4833 (2007)

    CAS  Google Scholar 

  463. I. Gouzman, O. Fuchs, Y. Lifshitz, S. Michaelson, A. Hoffman, Nanodiamond growth on diamond by energetic plasma bombardment. Diam. Relat. Mater. 16(4–7), 762–766 (2007)

    Article  CAS  Google Scholar 

  464. Y. Yao, M.Y. Liao, Z.G. Wang, Y. Lifshitz, S.T. Lee, Nucleation of diamond by pure carbon ion bombardment - a transmission electron microscopy study. Appl. Phys. Lett. 87(6), 063103/1–063103/3 (2005)

    Article  CAS  Google Scholar 

  465. Y. Yao, M.Y. Liao, T. Kohler, T. Frauenheim, R.Q. Zhang, Z.G. Wang, Y. Lifshitz, S.T. Lee, Diamond nucleation by energetic pure carbon bombardment. Phys. Rev. B: Condens. Matter Mater. Phys. 72(3), 035402/1–035402/5 (2005)

    Article  CAS  Google Scholar 

  466. D. Amans, A.-C. Chenus, G. Ledoux, C. Dujardin, C. Reynaud, O. Sublemontier, K. Masenelli-Varlot, O. Guillois, Nanodiamond synthesis by pulsed laser ablation in liquids. Diam. Relat. Mater. 18(2–3), 177–180 (2009)

    Article  CAS  Google Scholar 

  467. J. Sun, Q. Zhai, X. Yang, Y. Lei, X. Du, J. Yang, Synthesis of diamond nanopowders from carbon powders by laser bombarding. 2005, 6 pp. CN 1663909 A 20050907 Patent written in Chinese. Application: CN 2004–10093973 20041220. Priority: CAN 144:152787 AN 2005:1332207

    Google Scholar 

  468. J. Sun, Q. Zhai, H. Du, L. Jiang, Y. Lei, X. Yang, X. Du, Effects of carbon material structures on the nanodiamond synthesis by laser irradiation. Nami Jishu Yu Jingmi Gongcheng 4(3), 217–220 (2006)

    CAS  Google Scholar 

  469. C.X. Wang, P. Liu, H. Cui, G.W. Yang, Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid. Appl. Phys. Lett. 87(20), 201913/1–201913/3 (2005)

    CAS  Google Scholar 

  470. P. Liu, C. Wang, J. Chen, N. Xu, G. Yang, N. Ke, J. Xu, Localized nanodiamond crystallization and field emission performance improvement of amorphous carbon upon laser irradiation in liquid. J. Phys. Chem. C 113(28), 12154–12161 (2009)

    Article  CAS  Google Scholar 

  471. Y.F. Lu, S.M. Huang, Z. Sun, Raman spectroscopy of phenylcarbyne polymer films under pulsed green laser irradiation. J. Appl. Phys. 87(2), 945–951 (2000)

    Article  CAS  Google Scholar 

  472. V.K. Goncharov, D.R. Ismailov, O.R. Lyudchik, S.A. Petrov, M.V. Puzyrev, Determination of the optical bandgap for diamond-like carbon films obtained by laser plasma deposition. J. Appl. Spectrosc. 74(5), 704–709 (2007)

    Article  CAS  Google Scholar 

  473. V.N. Varyukhin, R.V. Shalaev, A.M. Prudnikov, Properties of diamond films obtained in a glow discharge under laser irradiation. Funct. Mater. 9(1), 111–114 (2002)

    CAS  Google Scholar 

  474. O.V. Kharissova, M. Osorio, M. Garza, B.I. Kharisov, Study of bismuth nanoparticles and nanotubes obtained by microwave heating. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 38(7), 567–572 (2008)

    Article  CAS  Google Scholar 

  475. O.V. Kharissova, M.G. Castanon, J.L. Hernandez Pinero, U.O. Mendez, B.I. Kharisov, Fast production method of Fe-filled carbon nanotubes. Mech. Adv. Mater. Struct. 16(1), 63–68 (2009)

    Article  CAS  Google Scholar 

  476. M.G. Rodriguez, O.V. Kharissova, U. Ortiz-Mendez, Formation of boron carbide nanofibers and nanobelts from heated by microwave. Rev. Adv. Mat. Sci. 7(1), 55–60 (2004)

    CAS  Google Scholar 

  477. D. Lewis III, M.A. Imam, A.W. Fliflet, R.W. Bruce, L.K. Kurihara, A.K. Kinkead, M. Lombardi, S.H. Gold, Recent advances in microwave and millimeter-wave processing of materials. Mater. Sci. Forum 539-543(Pt. 4, THERMEC 2006), 3249–3254 (2007)

    Article  CAS  Google Scholar 

  478. X.-T. Yan, X. Yongdong, Chemical Vapour Deposition: An Integrated Engineering Design for Advanced Materials (Engineering Materials and Processes) (Springer, London, 2009), p. 327

    Google Scholar 

  479. H.O. Pierson, Handbook of chemical vapor deposition, in Second Edition: Principles, Technology and Applications (Materials Science and Process Technology Series), 2nd edn., (William Andrew, Norwich, 2000), p. 506

    Google Scholar 

  480. P George, Chemical Vapor Deposition. VDM Verlag Dr. Mueller E.K. (2008), p .112

    Google Scholar 

  481. F.J. Gordillo-Vazquez, C. Gomez-Aleixandre, J.M. Albella, Plasma chemistry in the CVD synthesis of nanodiamond films. Proc. – Electrochem. Soc. 2005-09(EUROCVD-15), 415–426 (2005)

    CAS  Google Scholar 

  482. C.-R. Lin, D.-H. Wei, M.-K. BenDao, et al., Effects of surface modification of nanodiamond particles for nucleation enhancement during its film growth by microwave plasma jet chemical vapour deposition technique. Adv. Mater. Sci. Eng. 2014, 937159 (2014). 5 pp

    Google Scholar 

  483. V.S. Purohit, D. Jain, V.G. Sathe, V. Ganesan, S.V. Bhoraskar, Synthesis of nanocrystalline diamonds by microwave plasma. J. Phys. D: Appl. Phys. 40(6), 1794–1800 (2007)

    Article  CAS  Google Scholar 

  484. M. Miyake, A. Ogino, M. Nagatsu, Characteristics of nano-crystalline diamond films prepared in Ar/H2/CH4 microwave plasma. Thin Solid Films 515(9), 4258–4261 (2007)

    Article  CAS  Google Scholar 

  485. S. Chowdhury, J. Borham, S.A. Catledge, A.W. Eberhardt, P.S. Johnson, Y.K. Vohra, Synthesis and mechanical wear studies of ultra smooth nanostructured diamond (USND) coatings deposited by microwave plasma chemical vapor deposition with He/H2/CH4/N2 mixtures. Diam. Relat. Mater. 17(4–5), 419–427 (2008)

    Article  CAS  Google Scholar 

  486. J.E. Butler, A.V. Sumant, The CVD of nanodiamond materials. Chem. Vap. Depos. 14(7–8), 145–160 (2008)

    Article  CAS  Google Scholar 

  487. W. Chen, X. Lu, Q. Yang, C. Xiao, R. Sammynaiken, J. Maley, A. Hirose, Effects of gas flow rate on diamond deposition in a microwave plasma reactor. Thin Solid Films 515(4), 1970–1975 (2006)

    Article  CAS  Google Scholar 

  488. A. Nanba, T. Imai, Y. Nishibayashi, Y. Yamamoto, K. Meguro, Microwave plasma CVD apparatus. JP 2005–218732 20050728. Priority: CAN 146:194557 AN 2007:143909

    Google Scholar 

  489. O. Ariyada, S. Sato, H. Suzuki, Microwave chemical vapor deposition apparatus for preparation of diamond, 2006, 12 pp. JP 2006083405 A 20060330 Patent written in Japanese. Application: JP 2004–266462 20040914. Priority: CAN 144:321896 AN 2006:292991

    Google Scholar 

  490. V. Pichot, M. Comet, E. Fousson, D. Spitzer, Detonation synthesis of nanodiamonds: their synthesis and use in pyrotechnics. Actual. Chim. 329, 8–13 (2009)

    CAS  Google Scholar 

  491. V.Y. Dolmatov, The structure of a cluster of a detonation-produced nanodiamond. Sverkhtverdye Materialy 1, 28–32 (2005)

    Google Scholar 

  492. V.Y. Dolmatov, Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications. Russ. Chem. Rev. 76(4), 339–360 (2007)

    Article  CAS  Google Scholar 

  493. V.Y. Dolmatov, Modern commercial technology for production of detonation nano-diamonds and the area of their application Report 1. Sverkhtverdye Materialy (3), 10–21 (2006)

    Google Scholar 

  494. V.Y. Dolmatov, Modern industrial methods for manufacture of detonation derived nanodiamonds and main areas of their use. Part 1. Sverkhtverdye Materialy (2), 18–29 (2006)

    Google Scholar 

  495. V.Y. Dolmatov, T. Fujimura, Physical and chemical problems of modification of detonation nanodiamond surface properties. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 217–230 (2005)

    Article  CAS  Google Scholar 

  496. J.B. Donnet, E. Fousson, T.K. Wang, M. Samirant, C. Baras, M. Pontier Johnson, Dynamic synthesis of diamonds. Diam. Relat. Mater. 9(3–6), 887–892 (2000)

    Article  CAS  Google Scholar 

  497. E. Osawa, Recent progress and perspectives in single-digit nanodiamond. Diam. Relat. Mater. 16(12), 2018–2022 (2007)

    Article  CAS  Google Scholar 

  498. E. Osawa, Disintegration and purification of crude aggregates of detonation nanodiamond. A few remarks on nano methodology. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 231–240 (2005)

    Article  CAS  Google Scholar 

  499. V.M. Titov, B.P. Tolochko, K.A. Ten, L.A. Lukyanchikov, P.I. Zubkov, The formation kinetics of detonation nanodiamonds. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 169–180 (2005)

    Article  CAS  Google Scholar 

  500. A.P. Puzyr, V.S. Bondar, Production of nanodiamonds with an increased colloidal stability by using an explosion synthesis. 2005, RU 2252192 C2 20050520 Patent written in Russian. Application: RU 2003–119416 20030626. Priority: CAN 142:448964 AN 2005:428972

    Google Scholar 

  501. L. Fang, H. Ohfuji, T. Irifune, A novel technique for the synthesis of nanodiamond powder. J. Nanomater. 2013, 201845 (2013). 4 pp.

    Google Scholar 

  502. E. Nakanishi, K. Matsui, C. Yamaguchi, H. Nishino, C. Kurusu, Manufacture of functional carbon materials, 2000, 5 pp. JP 2000109310 A 20000418 Patent written in Japanese. Application: JP 99-218782 19990802. Priority: JP 98-219197 19980803. CAN 132:253156 AN 2000:247376

    Google Scholar 

  503. A.K. Khachatryan, S.G. Aloyan, P.W. May, R. Sargsyan, V.A. Khachatryan, V.S. Baghdasaryan, Graphite-to-diamond transformation induced by ultrasound cavitation. Diam. Relat. Mater. 17(6), 931–936 (2008)

    Article  CAS  Google Scholar 

  504. S.K. Gordeev, S.B. Korchagina, Method for preparation of nanodiamond powders for producing stable suspensions. 2007, 3 pp. RU 2302994 C2 20070720 Patent written in Russian. Application: RU 2004–121069 20040701. Priority: CAN 147:191800 AN 2007:789603

    Google Scholar 

  505. L.-J. Chen, N.-H. Tai, C.-Y. Lee, I.-N. Lin, Effects of pretreatment processes on improving the formation of ultrananocrystalline diamond. J. Appl. Phys. 101(6), 064308/1–064308/6 (2007)

    CAS  Google Scholar 

  506. K. Hanada, K. Matsuzaki, T. Sano, Nanocrystalline diamond films fabricated by sol-gel technique. Surf. Sci. 601(18), 4502–4505 (2007)

    Article  CAS  Google Scholar 

  507. S. Iijima, Process and apparatus for manufacture of diamond powder in nanometer range by size reduction. 1992, 4 pp. JP 04132606 A 19920506 Heisei. Patent written in Japanese. Application: JP 90–254415 19900925. Priority: CAN 117:153818 AN 1992:553818

    Google Scholar 

  508. J. Adler, Y. Gershon, T. Mutat, A. Sorkin, E. Warszawski, R. Kalish, Y. Yaish, Visualizing nanodiamond and nanotubes with AViz. Springer Proc. Phys. 123(Computer Simulation Studies in Condensed-Matter Physics XIX), 56–60 (2009)

    Article  CAS  Google Scholar 

  509. J. Adler, P. Pine, Visualization techniques for modelling carbon allotropes. Comput. Phys. Commun. 180(4), 580–582 (2009)

    Article  CAS  Google Scholar 

  510. M. El Bojaddaini, H. Chatei, M. El Hammouti, H. Robert, J. Bougdira, Modeling of a pulsed microwave plasma discharge in view of diamond film synthesis. Los. Alamos Natl. Lab., Prepr. Arch., Phys. 156 (2007). arXiv:0711.0845v1 [physics.soc-ph]

    Google Scholar 

  511. A.A. Fokin, P.R. Schreiner, Band gap tuning in nanodiamonds: first principle computational studies. Mol. Phys. 107(8–12), 823–830 (2009)

    Article  CAS  Google Scholar 

  512. A.S. Barnard, S.P. Russo, I.K. Snook, Modeling of stability and phase transformations in zero- and one-dimensional nanocarbon systems, in Handbook of Theoretical and Computational Nanotechnology, ed. by M. Rieth, W. Schommers (Eds), American Scientific Publishers, Valencia, California, vol. 9, (2006), pp. 573–622

    Google Scholar 

  513. A.S. Barnard, S.P. Russo, I.K. Snook, Simulation and bonding of dopants in nanocrystalline diamond. J. Nanosci. Nanotech. 5(9), 1395–1407 (2005)

    Article  CAS  Google Scholar 

  514. C.X. Wang, Y.H. Yang, N.S. Xu, G.W. Yang, Thermodynamics of diamond nucleation on the nanoscale. J. Am. Chem. Soc. 126(36), 11303–11306 (2004)

    Article  CAS  Google Scholar 

  515. A.S. Barnard, S.P. Russo, I.K. Snook, Modeling of stability and phase transformations in quasi-zero dimensional nanocarbon systems. J. Comput. Theor. Nanosci. 2(2), 180–201 (2005)

    Article  CAS  Google Scholar 

  516. L. La Torre Riveros, D.A. Tryk, C.R. Cabrera, Chemical purification and characterization of diamond nanoparticles for electrophoretically coated electrodes. Rev. Adv. Mater. Sci. 10(3), 256–260 (2005)

    Google Scholar 

  517. N.V. Novikov, G.P. Bogatyreva, G.F. Nevstruev, G.D. Il'nitskaya, M.N. Voloshin, Magnetic methods of purification control of nanodiamond powders. Phys. Solid State (Translation of Fizika Tverdogo Tela (Sankt-Peterburg)) 46(4), 672–674 (2004)

    CAS  Google Scholar 

  518. K. Lin, S. Hou, B. Ma, Effect of ultrasonic-dispersion for diamond powder purification. Jingangshi Yu Moliao Moju Gongcheng 6, 9–12 (2007)

    Google Scholar 

  519. S. Liu, J. Liu, P. Li, Y. Li, Y. Shen, Process for purification of diamond by electrolysis. 2007, 7 pp. CN 101049929 A 20071010 Patent written in Chinese. Application: CN 2007–10054424 20070518

    Google Scholar 

  520. A.G. Ovcharenko, A.V. Ignatchenko, R.R. Sataev, P.M. Brylyakov, Purification of ultradispersed diamond by removal of soluble and adsorbed impurities using electric field. 1996, SU 1815933 A1 19960620 Patent written in Russian. Application: SU 90–4855039 19900727. Priority: CAN 125:333282 AN 1996:729518

    Google Scholar 

  521. S.I. Dolgaev, N.A. Kirichenko, L.A. Kulevskii, E.N. Lubnin, A.V. Simakin, G.A. Shafeev, Laser purification of ultradispersed diamond in aqueous solution. Quantum Electron 34(9), 860–864 (2004)

    Article  CAS  Google Scholar 

  522. Yu.A. Doynikov, A.F. Makhrachev, K.K. Kurbatov, I.V. Makarskii, E.I. Adodin, S.A. Yagupov, L.G. Tarasova, E.G. Kovalenko, Method for purification of diamonds. 2009, 7 pp. RU 2367601 C1 20090920 Patent written in Russian. Application: RU 2007–147784 20071225. Priority: CAN 151:384616 AN 2009:1153611

    Google Scholar 

  523. H. Zeng, X. An, Method for purifying diamond nanoparticle with Ce salt. 2004, 11 pp. CN 1480252 A 20040310 Patent written in Chinese. Application: CN 2003–139849 20030718. Priority: CAN 142:357372 AN 2005:20996

    Google Scholar 

  524. I.L. Petrov, Yu.A. Skryabin, O.A. Shenderova, Nanodiamond material, method and device for purifying and modifying a nanodiamond. 2008, 21 pp. Patent written in Russian. Application: WO 2008-RU313 20080520. Priority: RU 2007–118553 20070521

    Google Scholar 

  525. K. Lin, Y. Pan, S. Hou, H. Xiao, B. Ma, Discussion on purification techniques of synthetic diamond. Diamond and Abrasives Engineering (5), 77–78 (2005)

    Google Scholar 

  526. D.F. Johnson, J.M. Mullin, W.D. Mattson, High-velocity collisions of nanodiamond. J. Phys. Chem. C 121(2), 1140–1145 (2017)

    Article  CAS  Google Scholar 

  527. M. Dubois, K. Guerin, E. Petit, N. Batisse, A. Hamwi, N. Komatsu, J. Giraudet, P. Pirotte, F. Masin, Solid-state NMR study of nanodiamonds produced by the detonation technique. J. Phys. Chem. C 113(24), 10371–10378 (2009)

    Article  CAS  Google Scholar 

  528. A.I. Shames, A.M. Panich, W. Kempinski, M.V. Baidakova, V.Y. Osipov, T. Enoki, A.Y. Vul, Magnetic resonance study of nanodiamonds. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 271–282 (2005)

    Article  CAS  Google Scholar 

  529. A.C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. R. Soc. London, Ser. A 362(1824), 2477–2512 (2004)

    Article  CAS  Google Scholar 

  530. D. Ballutaud, F. Jomard, M.-A. Pinault, G. Frangieh, N. Simon, sp2 carbon phases in nanocrystalline diamond. ECS Trans. 13(2, Dielectrics for Nanosystems 3: Materials Science, Processing, Reliability, and Manufacturing), 377–383 (2008)

    Article  CAS  Google Scholar 

  531. B. Lesiak, L. Kövér, J. Tóth, et al., C sp2/sp3 hybridisations in carbon nanomaterials – XPS and (X)AES study. Appl. Surf. Sci. 452, 223–231 (2018)

    Article  CAS  Google Scholar 

  532. A.V. Shushkanova, L. Dubrovinsky, N. Dubrovinskaya, Y.A. Litvin, V.S. Urusov, Synthesis and in-situ Raman spectroscopy of nanodiamonds. Dokl. Phys. 53(1), 1–4 (2008)

    Article  CAS  Google Scholar 

  533. T. Hamilton, R.G. Wilks, M.V. Yablonskikh, Q. Yang, M.N. Foursa, A. Hirose, V.N. Vasilets, A. Moewes, Determining the sp2/sp3 bonding concentrations of carbon films using X-ray absorption spectroscopy. Can. J. Phys. 86(12), 1401–1407 (2008)

    Article  CAS  Google Scholar 

  534. X. Xiao, B.W. Sheldon, Y. Qi, A.K. Kothari, Intrinsic stress evolution in nanocrystalline diamond thin films with deposition temperature. Appl. Phys. Lett. 92(13), 131908/1–131908/3 (2008)

    Article  CAS  Google Scholar 

  535. C.J. Tang, M.A. Neto, M.J. Soares, A.J.S. Fernandes, A.J. Neves, J. Gracio, A comparison study of hydrogen incorporation among nanocrystalline, microcrystalline and polycrystalline diamond films grown by chemical vapor deposition. Thin Solid Films 515(7–8), 3539–3546 (2007)

    Article  CAS  Google Scholar 

  536. M.Y. Koroleva, D.V. Berdnikova, B.V. Spitsyn, E.V. Yurtov, Sedimentation stability of aqueous dispersions of nanodiamond agglomerates. Theor. Found. Chem. Eng. 43(4), 478–481 (2009)

    Article  CAS  Google Scholar 

  537. E. Osawa, D. Ho, H. Huang, M.V. Korobov, N.N. Rozhkova, Consequences of strong and diverse electrostatic potential fields on the surface of detonation nanodiamond particles. Diam. Relat. Mater. 18(5–8), 904–909 (2009)

    Article  CAS  Google Scholar 

  538. J. Houska, N.R. Panyala, E.M. Pena-Mendez, J. Havel, Mass spectrometry of nanodiamonds. Rapid Commun. Mass Spectrom. 23(8), 1125–1131 (2009)

    Article  CAS  Google Scholar 

  539. N. Brown, O. Hod, Controlling the electronic properties of nanodiamonds via surface chemical functionalization: a DFT study. J. Phys. Chem. C 118(10), 5530–5537 (2014)

    Article  CAS  Google Scholar 

  540. J.-Y. Raty, G. Galli, Structural and electronic properties of isolated nanodiamonds: a theoretical perspective. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 15–24 (2005)

    Article  CAS  Google Scholar 

  541. J. Preclikova, F. Trojanek, A. Kromka, B. Rezek, B. Dzurnak, P. Maly, Ultrafast photoluminescence of nanocrystalline diamond films. Phys. Status Solidi A: Appl. Mater. Sci. 205(9), 2154–2157 (2008)

    Article  CAS  Google Scholar 

  542. I.I. Kulakova, Surface chemistry of nanodiamonds. Phys. Solid State (Translation of Fizika Tverdogo Tela (Sankt-Peterburg)) 46(4), 636–643 (2004)

    CAS  Google Scholar 

  543. J.C. Madaleno, M.K. Singh, E. Titus, G. Cabral, J. Gracio, L. Pereira, Electron field emission from patterned nanocrystalline diamond coated a-SiO2 micrometer-tip arrays. Appl. Phys. Lett. 92(2), 023113/1–023113/3 (2008)

    Article  CAS  Google Scholar 

  544. N. Aggadi, C. Arnas, F. Benedic, C. Dominique, X. Duten, F. Silva, K. Hassouni, D.M. Gruen, Structural and chemical characterization of soot particles formed in Ar/H2/CH4 microwave discharges during nanocrystalline diamond film synthesis. Diam. Relat. Mater. 15(4–8), 908–912 (2006)

    Article  CAS  Google Scholar 

  545. C. Popov, M. Novotny, M. Jelinek, S. Boycheva, V. Vorlicek, M. Trchova, W. Kulisch, Chemical bonding study of nanocrystalline diamond films prepared by plasma techniques. Thin Solid Films 506–507, 297–302 (2006)

    Article  CAS  Google Scholar 

  546. D. Slocombe, A. Porch, E. Bustarret, O.A. Williams, Microwave properties of nanodiamond particles. Appl. Phys. Lett. 102, 244102 (2013)

    Article  CAS  Google Scholar 

  547. A.S. Barnard, Stability of nanodiamond, in Ultrananocrystalline Diamond, (2006), Elsevier Science, New York, pp. 117–154

    Chapter  Google Scholar 

  548. S.K. Gordeev, S.B. Korchagina, On the stability of small sized nanodiamonds. J. Superhard Mater. 29(2), 124–125 (2007)

    Article  Google Scholar 

  549. Y.V. Butenko, P.R. Coxon, M. Yeganeh, A.C. Brieva, K. Liddell, V.R. Dhanak, L. Siller, Stability of hydrogenated nanodiamonds under extreme ultraviolet irradiation. Diam. Relat. Mater. 17(6), 962–966 (2008)

    Article  CAS  Google Scholar 

  550. G.-z. Wang, Review on correlation of diamond performance and nitrogen. Chaoying Cailiao Gongcheng 18(2), 33–36 (2006)

    Google Scholar 

  551. S. Turner, O.I. Lebedev, O. Shenderova, I.I. Vlasov, J. Verbeeck, G. Van Tendeloo, Determination of size, morphology, and nitrogen impurity location in treated detonation nanodiamond by transmission electron microscopy. Adv. Funct. Mater. 19(13), 2116–2124 (2009)

    Article  CAS  Google Scholar 

  552. I.I. Kulakova, Chemical properties of nanodiamond. NATO Sci. Ser., II: Math., Phys. Chem. 200(Innovative Superhard Materials and Sustainable Coatings for Advanced Manufacturing), 365–379 (2005)

    CAS  Google Scholar 

  553. W. Jiang, W.-y. Lu, B.-w. Yang, Y. Yao, S.-x. Zhang, Z.-l. Kou, Method for analyzing impurity elements in diamond by detecting combustion residues of diamond with EDS and SEM. Chaoying Cailiao Gongcheng 18(3), 6–11 (2006)

    CAS  Google Scholar 

  554. G.P. Bogatyreva, V.M. Maevskii, G.D. Il'nitskaya, G.F. Nevstruev, V.N. Tkach, I.N. Zaitseva, Impurities and inclusions in synthetic diamond powders of the AC4 and AC6 grades. Sverkhtverdye Materialy 4, 62–69 (2006)

    Google Scholar 

  555. L.V.C. Assali, W.V.M. Machado, R. Larico, J.F. Justo, Cobalt in diamond: an ab initio investigation. Diam. Relat. Mater. 16(4–7), 819–822 (2007)

    Article  CAS  Google Scholar 

  556. H.-F. Cheng, Y.-C. Lee, S.-J. Lin, Y.-P. Chou, T.T. Chen, I.-N. Lin, Current image tunneling spectroscopy of boron-doped nanodiamonds. J. Appl. Phys. 97(4), 044312/1–044312/5 (2005)

    Article  CAS  Google Scholar 

  557. C.X. Yan, Y. Dai, B.B. Huang, R. Long, M. Guo, Shallow donors in diamond: Be and Mg. Comput. Mater. Sci. 44(4), 1286–1290 (2009)

    Article  CAS  Google Scholar 

  558. H. Sakai, H. Kudou, M. Takahashi, M. Arifuku, Method for producing dispersion of nanodiamond in organic solvent. WO 2008-JP3215 20081106. Priority: JP 2007–290340 20071108. CAN 150:518067 AN 2009:587231

    Google Scholar 

  559. U. Maitra, A. Gomathi, C.N.R. Rao, Covalent and noncovalent functionalization and solubilisation of nanodiamond. J. Exp. Nanosci. 3(4), 271–278 (2008)

    Article  CAS  Google Scholar 

  560. D. Das, R.N. Singh, A review of nucleation, growth and low temperature synthesis of diamond thin films. Int. Mater. Rev. 52(1), 29–64 (2007)

    Article  CAS  Google Scholar 

  561. B. Chernomordik, S. Dumpala, Z.Q. Chen, M.K. Sunkara, Nanodiamond tipped and coated conical carbon tubular structures. Chem. Vap. Depos. 14(7–8), 256–262 (2008)

    Article  CAS  Google Scholar 

  562. S.J. Askari, G.C. Chen, F. Akhtar, F.X. Lu, Adherent and low friction nano-crystalline diamond film grown on titanium using microwave CVD plasma. Diam. Relat. Mater. 17(3), 294–299 (2008)

    Article  CAS  Google Scholar 

  563. S.J. Askari, G.C. Chen, F.X. Lu, Growth of polycrystalline and nanocrystalline diamond films on pure titanium by microwave plasma assisted CVD process. Mat. Res. Bull. 43(5), 1086–1092 (2008)

    Article  CAS  Google Scholar 

  564. W. Kulisch, C. Popov, V. Vorlicek, P.N. Gibson, G. Favaro, Nanocrystalline diamond growth on different substrates. Thin Solid Films 515(3), 1005–1010 (2006)

    Article  CAS  Google Scholar 

  565. K. Teii, T. Ikeda, Effect of enhanced C2 growth chemistry on nanodiamond film deposition. Appl. Phys. Lett. 90(11), 111504/1–111504/3 (2007)

    Article  CAS  Google Scholar 

  566. F.J. Gordillo-Vazquez, J.M. Albella, Distinct nonequilibrium plasma chemistry of C2 affecting the synthesis of nanodiamond thin films from C2H2 (1%)/H2/Ar-rich plasmas. J Appl. Phys. 94(9), 6085–6090 (2003)

    Article  CAS  Google Scholar 

  567. X.-H. Li, W.-T. Guo, X.-K. Chen, W. Gan, J.-P. Yang, R. Wang, S.-Z. Cao, Y. Rong, Effect of pressure on growth rate and quality of diamond films prepared by microwave plasma chemical vapor deposition. Wuli Xuebao 56(12), 7183–7187 (2007)

    CAS  Google Scholar 

  568. L. Wang, J. Lu, Q. Su, N. Wu, J. Liu, W. Shi, Y. Xia, [100]-textured growth of polycrystalline diamond films on alumina substrates by microwave plasma chemical vapor deposition. Mater Lett. 60(19), 2390–2394 (2006)

    Article  CAS  Google Scholar 

  569. C.S. Abreu, M.S. Amaral, F.J. Oliveira, A. Tallaire, F. Benedic, O. Syll, G. Cicala, J.R. Gomes, R.F. Silva, Tribological testing of self-mated nanocrystalline diamond coatings on Si3N4 ceramics. Surf. Coat. Technol. 200(22–23), 6235–6239 (2006)

    Article  CAS  Google Scholar 

  570. T. Enoki, K. Takai, V. Osipov, M. Baidakova, A. Vul, Nanographene and nanodiamond; new members in the nanocarbon family. Chem. Asian J. 4(6), 796–804 (2009)

    Article  CAS  Google Scholar 

  571. V.P. Grichko, O.A. Shenderova, Nanodiamond: designing the bio-platform, in Ultrananocrystalline Diamond, ed. by O.A. Shenderova, D.M. Gruen. (2006), Elsevier Science, New York, pp. 529–557

    Chapter  Google Scholar 

  572. K.V. Purtov, L.P. Burakova, A.P. Puzyr, V.S. Bondar, The interaction of linear and ring forms of DNA molecules with nanodiamonds synthesized by detonation. Nanotechnology 19(32), 325101/1–325101/3 (2008)

    Article  CAS  Google Scholar 

  573. N. Komatsu, Size separation and surface functionalization of nanodiamond particles aiming at their biomedical applications. Hyomen Kagaku 30(5), 273–278 (2009)

    Article  CAS  Google Scholar 

  574. C. Presti, J.G. Alauzun, D. Laurencin, P. Hubert Mutin, Surface functionalization of detonation nanodiamonds by phosphonic dichloride derivatives. Langmuir 30(30), 9239–9245 (2014)

    Article  CAS  Google Scholar 

  575. Z.C. Kennedy, C.A. Barrett, M.G. Warner, Direct functionalization of an acid-terminated nanodiamond with azide: enabling access to 4-substituted-1,2,3-triazole-functionalized particles. Langmuir 33(11), 2790–2798 (2017)

    Article  CAS  Google Scholar 

  576. O. Muller, V. Pichot, L. Merlat, L. Schmidlin, D. Spitzer, Nonlinear optical behavior of porphyrin functionalized nanodiamonds: an efficient material for optical power limiting. Appl. Opt. 55(14), 3801–3808 (2016)

    Article  CAS  Google Scholar 

  577. N. Alzate-Carvajal, E.V. Basiuk, V. Meza-Laguna, et al., Solvent-free one-step covalent functionalization of graphene oxide and nanodiamond with amines. RSC Adv. 6, 113596–113610 (2016)

    Article  CAS  Google Scholar 

  578. G. Ke, S. Huan, F.-l. Huang, Synthesis and dispersibility of derivative of 1,3-propanediamine with nanodiamond. Gongneng Cailiao 40(5), 863–866 (2009)

    CAS  Google Scholar 

  579. Z. Remes, A. Choukourov, J. Stuchlik, J. Potmesil, M. Vanecek, Nanocrystalline diamond surface functionalization in radio frequency plasma. Diam. Relat. Mater. 15(4–8), 745–748 (2006)

    Article  CAS  Google Scholar 

  580. V.N. Mochalin, Y. Gogotsi, Wet chemistry route to hydrophobic blue fluorescent nanodiamond. J. Am. Chem. Soc. 131(13), 4594–4595 (2009)

    Article  CAS  Google Scholar 

  581. Y. Liang, M. Ozawa, A. Krueger, A general procedure to functionalize agglomerating nanoparticles demonstrated on nanodiamond. ACS Nano 3(8), 2288–2296 (2009)

    Article  CAS  Google Scholar 

  582. W.S. Yeap, S. Chen, K.P. Loh, Detonation nanodiamond: an organic platform for the suzuki coupling of organic molecules. Langmuir 25(1), 185–191 (2009)

    Article  CAS  Google Scholar 

  583. M. Baidakova, A. Vul, New prospects and frontiers of nanodiamond clusters. J. Phys. D: Appl. Phys. 40(20), 6300–6311 (2007)

    Article  CAS  Google Scholar 

  584. A.P. Puzyr, V.S. Bondar, A.A. Bukayemsky, G.E. Selyutin, V.F. Kargin, Physical and chemical properties of modified nanodiamonds. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 261–270 (2005)

    Article  CAS  Google Scholar 

  585. B.V. Spitsyn, M.N. Gradoboev, T.B. Galushko, T.A. Karpukhina, N.V. Serebryakova, I.I. Kulakova, N.N. Melnik, Purification and functionalization of nanodiamond. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 241–252 (2005)

    Article  CAS  Google Scholar 

  586. V.N. Khabashesku, J.L. Margrave, E.V. Barrera, Functionalized carbon nanotubes and nanodiamonds for engineering and biomedical applications. Diam. Relat. Mater. 14(3–7), 859–866 (2005)

    Article  CAS  Google Scholar 

  587. V.N. Khabashesku, Y. Liu, J.L. Margrave, M.L. Margrave, Functionalization of nanodiamond powder through fluorination and subsequent derivatization reactions. U.S. Pat. Appl. Publ. 2005, 18 pp. US 2005158549 A1 20050721 Patent written in English. Application: US 2004-996869 20041124. Priority: US 2003-525588 20031126

    Google Scholar 

  588. Y. Liu, V.N. Khabashesku, N.J. Halas, Functionalization of nanodiamond powder and applications for glass surface diamond coatings. Abstracts of Papers, 229th ACS National Meeting, San Diego, CA, United States, March 13–17, 2005, 2005, COLL-581

    Google Scholar 

  589. Y. Liu, Z. Gu, J.L. Margrave, V.N. Khabashesku, Functionalization of nanoscale diamond powder: Fluoro-, Alkyl-, Amino-, and Amino Acid-Nanodiamond derivatives. Chem. Mater. 16(20), 3924–3930 (2004)

    Article  CAS  Google Scholar 

  590. Y. Liu, V.N. Khabashesku, N.J. Halas, Fluorinated nanodiamond as a wet chemistry precursor for diamond coatings covalently bonded to glass surface. J. Am. Chem. Soc. 127(11), 3712–3713 (2005)

    Article  CAS  Google Scholar 

  591. V.L. Kuznetsov, Y.V. Butenko, Nanodiamond graphitization and properties of onion-like carbon. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 199–216 (2005)

    Article  CAS  Google Scholar 

  592. S.J. Kwon, J.G. Park, Theoretical analysis of the graphitization of a nanodiamond. J. Phys.: Condens. Matter 19, 386215 (2007)

    Google Scholar 

  593. J.-M. Leyssale, G.L. Vignoles, Molecular dynamics evidences of the full graphitization of a nanodiamond annealed at 1500K. Chem. Phys. Lett. 454(4–6), 299–304 (2008)

    Article  CAS  Google Scholar 

  594. Z. Qiao, J. Li, N. Zhao, C. Shi, P. Nash, Graphitization and microstructure transformation of nanodiamond to onion-like carbon. Scr. Mater. 54(2), 225–229 (2006)

    Article  CAS  Google Scholar 

  595. R. Narulkar, S. Bukkapatnam, L.M. Raff, R. Komanduri, Graphitization as a precursor to wear of diamond in machining pure iron: a molecular dynamics investigation. Comput. Mater. Sci. 45(2), 358–366 (2009)

    Article  CAS  Google Scholar 

  596. A. Brodka, L. Hawelek, A. Burian, S. Tomita, V. Honkimaeki, Molecular dynamics study of structure and graphitization process of nanodiamonds. J. Mol. Struct 887(1–3), 34–40 (2008)

    Article  CAS  Google Scholar 

  597. A.F. Azevedo, S.C. Ramos, M.R. Baldan, N.G. Ferreira, Graphitization effects of CH4 addition on NCD growth by first and second Raman spectra and by X-ray diffraction measurements. Diam. Relat. Mater. 17(7–10), 1137–1142 (2008)

    Article  CAS  Google Scholar 

  598. V.V. Kononenko, T.V. Kononenko, S.M. Pimenov, M.N. Sinyavskii, V.I. Konov, F. Dausinger, Effect of the pulse duration on graphitisation of diamond during laser ablation. Quantum Electron 35(3), 252–256 (2005)

    Article  CAS  Google Scholar 

  599. V.N. Strekalov, Graphitization of diamond stimulated by electron-hole recombination. Appl. Phys. A Mater. Sci. Process. 80(5), 1061–1066 (2005)

    Article  CAS  Google Scholar 

  600. I. Gouzman, S. Michaelson, A. Hoffman, Nanodiamond films deposited from energetic species: material characterization and mechanism of formation, in Ultrananocrystalline Diamond, ed. by O.A. Shenderova, D.M. Gruen (Eds), (2006), Elsevier Science, New York, pp. 229–272

    Chapter  Google Scholar 

  601. A. Hoffman, Mechanism and properties of nanodiamond films deposited by the DC-GD-CVD process. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 125–144 (2005)

    Article  CAS  Google Scholar 

  602. W. Liu, C. Gu, The preparation and properties of nanostructured diamond films deposited by a hot-filament chemical vapor deposition method via continuous ion bombardment. Thin Solid Films 467(1–2), 4–9 (2004)

    Article  CAS  Google Scholar 

  603. M. Liao, F. Qin, J. Zhang, Z. Liu, S. Yang, Z. Wang, S.-T. Lee, Ion bombardment as the initial stage of diamond film growth. J. Appl. Phys. 89(3), 1983–1985 (2001)

    Article  CAS  Google Scholar 

  604. L. Grausova, L. Bacakova, A. Kromka, S. Potocky, M. Vanecek, M. Nesladek, V. Lisa, Nanodiamond as promising material for bone tissue engineering. J. Nanosci. Nanotech. 9(6), 3524–3534 (2009)

    Article  CAS  Google Scholar 

  605. S. Liu, W. Liu, L. Hei, W. Tang, F. Lv, Research on preparation of diamond coatings containing Si by microwave plasma chemical vapor deposition. Beijing Keji Daxue Xuebao 29(4), 408–412 (2007). 446.

    CAS  Google Scholar 

  606. W. Man, J. Wang, C. Wang, Z. Ma, S. Wang, L. Xiong, Low temperature synthesis of nanocrystalline diamond films deposited by microwave CVD. Wuhan Huagong Xueyuan Xuebao 28(4), 57–61 (2006)

    CAS  Google Scholar 

  607. E.A. Mujica, F. Piazza, J. De Jesus, B.R. Weiner, S.D. Wolter, G. Morell, Synthesis of unstrained failure-resistant nanocrystalline diamond films. Thin Solid Films 515(20–21), 7906–7910 (2007)

    Article  CAS  Google Scholar 

  608. J. Zhou, L. Wang, G. Liu, S. Ouyang, Method for synthesizing diamond nanofilm with microwave plasma at low temperature. 2007, 3 pp. CN 101024893 A 20070829 Patent written in Chinese. Application: CN 2007–10051244 20070111. Priority: CAN 147:353777 AN 2007:967265

    Google Scholar 

  609. V.V. Karbushev, I.I. Konstantinov, I.L. Parsamyan, V.G. Kulichikhin, V.A. Popov, T.F. George, Preparation of polymer-nanodiamond composites with improved properties. Adv. Mater. Res. 59(1st International Conference on New Materials for Extreme Environments, 2008), 275–278 (2009)

    CAS  Google Scholar 

  610. T. Sawaguchi, S. Yano, T. Hagiwara, H. Ito, Transparent heat-resistant polymer-nanodiamond composites. PCT Int. Appl. 2005, 20 pp. WO 2005085359 A1 20050915 Patent written in Japanese. Application: WO 2005-JP3887 20050307. Priority: JP 2004–64281 20040308

    Google Scholar 

  611. K. Eswar Prasad, B. Das, U. Maitra, U. Ramamurty, C.N.R. Rao, Extraordinary synergy in the mechanical properties of polymer matrix composites reinforced with 2 nanocarbons. Proc. Natl. Acad. Sci. U. S. A., Early Ed. 1-4, 4 (2009)

    Google Scholar 

  612. A.S. Gavrilov, A.P. Voznyakovskii, Rheological characteristics and relaxation properties of polymer-nanodiamond composites. Russ. J. Appl. Chem. 82(6), 1041–1045 (2009)

    Article  CAS  Google Scholar 

  613. V.Y. Dolmatov, Polymer-diamond composites based on detonation nanodiamonds. Report 3. Sverkhtverdye Materialy 4, 3–12 (2007)

    Google Scholar 

  614. I.I. Konstantinov, V.V. Karbushev, A.V. Semakov, V.G. Kulichikhin, Combining carbon and polymeric particles in an inert fluid as a promising approach to synthesis of nanocomposites. Russ. J. Appl. Chem. 82(3), 483–487 (2009)

    Article  CAS  Google Scholar 

  615. M. Mahdavi, N. Mahmoudi, F. Rezaie Anaran, A. Simchi, Electrospinning of nanodiamond-modified polysaccharide nanofibers with physico-mechanical properties close to natural skins. Mar. Drugs 14, 128 (2016)

    Article  CAS  Google Scholar 

  616. H. Yoshioka, R. Furukuwa, H. Sawada, Preparation and applications of fluoroalkylated oligomeric nanoparticles. Hyomen 44(5), 167–182 (2006)

    CAS  Google Scholar 

  617. W. Zhang, S.-T. Lee, I. Bello, K.M. Leung, H.-Q. Li, Y.-S. Zou, Y.M. Chong, K.L. Ma, Ultrahard multilayer coatings based on alternating layers of nanocrystalline diamond and nanocrystalline cubic boron nitride. U.S. Pat. Appl. Publ., 2009, 14 pp. US 2009022969 A1 20090122 Patent written in English. Application: US 2007-880115 20070719. Priority: CAN 150:150364 AN 2009:93515

    Google Scholar 

  618. H.Q. Li, K.M. Leung, K.L. Ma, Q. Ye, Y.M. Chong, Y.S. Zou, W.J. Zhang, S.T. Lee, I. Bello, Nanocubic boron nitride/nanodiamond multilayer structures. Appl. Phys. Lett. 91(20), 201918/1–201918/3 (2007)

    CAS  Google Scholar 

  619. F.A. Almeida, M. Belmonte, A.J.S. Fernandes, F.J. Oliveira, R.F. Sand ilva, MPCVD diamond coating of Si3N4-TiN electroconductive composite substrates. Diam. Relat. Mater. 16(4–7), 978–982 (2007)

    Article  CAS  Google Scholar 

  620. Y. Tzeng, Y.-C. Chen, A.-J. Cheng, Y.-T. Hung, C.-S. Yeh, M. Park, B.M. Wilamowski, Chemically vapor deposited diamond-tipped one-dimensional nanostructures and nanodiamond-silica-nanotube composites. Diam. Relat. Mater. 18(2–3), 173–176 (2009)

    Article  CAS  Google Scholar 

  621. M.K. Singh, E. Titus, J.C. Madaleno, L. Pereira, G. Cabral, V.F. Neto, J. Gracio, Nanocrystalline diamond on SiO2 fiber: a new class of hybrid material. Diam. Relat. Mater. 17(7–10), 1106–1109 (2008)

    Article  CAS  Google Scholar 

  622. E.A. Ekimov, A. Zoteev, N.F. Borovikov, Sintering of a nanodiamond in the presence of cobalt. Inorg. Mater. 45(5), 491–494 (2009)

    Article  CAS  Google Scholar 

  623. I.I. Vlasov, O.I. Lebedev, V.G. Ralchenko, E. Goovaerts, G. Bertoni, G. Van Tendeloo, V.I. Konov, Hybrid diamond-graphite nanowires produced by microwave plasma chemical vapor deposition. Adv. Mater. 19(22), 4058–4062 (2007)

    Article  CAS  Google Scholar 

  624. I.P. Chang, K.C. Hwang, C.-S. Chiang, Preparation of fluorescent magnetic nanodiamonds and cellular imaging. J. Amer. Chem. Soc. 130(46), 15476–15481 (2008)

    Article  CAS  Google Scholar 

  625. R.K. Yafarov, Production of nanodiamond composites in a low-pressure microwave gas-discharge plasma. Tech. Phys. 51(1), 40–46 (2006)

    Article  CAS  Google Scholar 

  626. R. Blum, P. Molian, Liquid-phase sintering of nanodiamond composite coatings on aluminum A319 using a focused laser beam. Surf. Coat. Technol. 204(1–2), 1–14 (2009)

    Article  CAS  Google Scholar 

  627. H. Matsubara, Fabrication of novel materials by the incorporation of nanodiamond into plated films. Hyomen Kagaku 30(5), 279–286 (2009)

    Article  CAS  Google Scholar 

  628. H. Matsubara, Co-deposition behavior of nanodiamond with electrolessly plated nickel films. Hyomen Gijutsu 57(7), 484–488 (2006)

    CAS  Google Scholar 

  629. P.Y. Detkov, V.A. Popov, V.G. Kulichikhin, S.I. Chukhaeva, Development of composite materials based on improved nanodiamonds. Top. Appl. Phys. 109(Molecular Building Blocks for Nanotechnology), 29–43 (2007)

    Article  CAS  Google Scholar 

  630. H. Uetsuka, T. Nakamura, C.E. Nebel, Nanodiamond-containing microstructure composites and method for transporting biological molecules into bodies by using them. 2009, 7 pp. JP 2009119561 A 20090604 Patent written in Japanese. Application: JP 2007–296378 20071115

    Google Scholar 

  631. S.H. Lee, Gas sensor using nanodiamond and gas detection method. 2009, 6 pp. KR 2009066740 A 20090624 Patent written in Korean. Application: KR 2007–134421 20071220. Priority: CAN 151:92754 AN 2009:780521

    Google Scholar 

  632. S. Raina, W.P. Kang, J.L. Davidson, Optimizing nitrogen incorporation in nanodiamond film for bio-analyte sensing. Diam. Relat. Mater. 18(5–8), 718–721 (2009)

    Article  CAS  Google Scholar 

  633. K.B. Holt, D.J. Caruana, E.J. Millan-Barrios, Electrochemistry of undoped diamond nanoparticles: accessing surface redox states. J. Am. Chem. Soc. 131(32), 11272–11273 (2009)

    Article  CAS  Google Scholar 

  634. I.S. Larionova, V.N. Belyaev, K.F. Il’inykh, A.V. Frolov, N.V. Bychin, V.M. Mitrofanov, Method for preparation and galvanic deposition of wear-resistant nanodiamonds based coating composition on metal surfaces. 2009, 5 pp. RU 2357017 C1 20090527 Patent written in Russian. Application: RU 2007–128703 20070725. Priority: CAN 150:565842 AN 2009:646846

    Google Scholar 

  635. P.A. Vityaz, The state of the art and prospects of detonation-synthesis nanodiamond applications in Belarus. Phys. Solid State 46(4), 606–610 (2004)

    Article  CAS  Google Scholar 

  636. S. Shiozaki, Normal-temperature glass, its formation, and normal temperature glass coating material. 2009, 18 pp. JP 2009102188 A 20090514 Patent written in Japanese. Application: JP 2007–274359 20071022. Priority: CAN 150:499296 AN 2009:583008

    Google Scholar 

  637. K.V. Purtov, V.S. Bondar, A.P. Puzyr, Nanodiamond sorbent and method of its obtaining. 2009, 7 pp. RU 2352387 C1 20090420 Patent written in Russian. Application: RU 2007–127892 20070719. Priority: CAN 150:450910 AN 2009:474289

    Google Scholar 

  638. V.S. Bondar, A.P. Puzyr, Possibilities and prospects for creation of new nanoprocesses based on detonation nanodiamond particles: medicobiological and technical aspects. Konstruktsii iz Kompozitsionnykh Materialov 4, 80–94 (2005)

    Google Scholar 

  639. S.A. Zibrov, V.V. Vasil’ev, V.L. Velichanskii, V.G. Pevgov, V.M. Rudoi, Method for protection of documents, valuable papers or products with nanodiamonds with active NV centers. 2009, 4 pp. RU 2357866 C1 20090610 Patent written in Russian. Application: RU 2008–136466 20080910. Priority: CAN 151:7812 AN 2009:703362

    Google Scholar 

  640. D. Zhang, X.-G. Hu, Y. Tong, F.-L. Huang, The research development of nanodiamond as a lubricating additive. Runhuayou 21(1), 50–54 (2006)

    CAS  Google Scholar 

  641. J. Qu, X. Li, B. Song, Polytetrafluoroethylene friction material for ultrasonic motor, 2004, 4 pp. CN 1473865 A 20040211 Patent written in Chinese. Application: CN 2003–132555 20030807. Priority: CAN 142:393210 AN 2004:1024000

    Google Scholar 

  642. J. Luo, X. Liu, X. Wang, Effect of proportion of nano-diamond and zirconia on color of core resin. Xiandai Kouqiang Yixue Zazhi 22(3), 251–254 (2008)

    CAS  Google Scholar 

  643. M. Comet, V. Pichot, B. Siegert, D. Spitzer, J.-P. Moeglin, Y. Boehrer, Use of nanodiamonds as a reducing agent in a chlorate-based energetic composition. Propellants, Explos., Pyrotech. 34(2), 166–173 (2009)

    Article  CAS  Google Scholar 

  644. Y. Xing, L. Dai, Nanodiamonds for nanomedicine. Nanomedicine 4(2), 207–218 (2009)

    Article  CAS  Google Scholar 

  645. V. Vaijayanthimala, H.-C. Chang, Functionalized fluorescent nanodiamonds for biomedical applications. Nanomedicine 4(1), 47–55 (2009)

    Article  CAS  Google Scholar 

  646. A.M. Schrand, S.A.C. Hens, O.A. Shenderova, Nanodiamond Particles: Properties and Perspectives for Bioapplications. Crit. Rev. Solid State Mater. Sci. 34(1–2), 18–74 (2009)

    Article  CAS  Google Scholar 

  647. C.-Y. Cheng, E. Perevedentseva, J.-S. Tu, P.-H. Chung, C.-L. Cheng, K.-K. Liu, J.-I. Chao, P.-H. Chen, C.-C. Chang, Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling. Appl. Phys. Lett. 90(16), 163903/1–163903/3 (2007)

    Article  CAS  Google Scholar 

  648. R.A. Shimkunas, E. Robinson, R. Lam, S. Lu, X. Xu, X.-Q. Zhang, H. Huang, E. Osawa, D. Ho, Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles. Biomaterials 30(29), 5720–5728 (2009)

    Article  CAS  Google Scholar 

  649. K.-K. Liu, C.-C. Wang, C.-L. Cheng, J.-I. Chao, Endocytic carboxylated nanodiamond for the labeling and tracking of cell division and differentiation in cancer and stem cells. Biomaterials 30(26), 4249–4259 (2009)

    Article  CAS  Google Scholar 

  650. M. Chen, E.D. Pierstorff, R. Lam, S.-Y. Li, H. Huang, E. Osawa, D. Ho, Nanodiamond-mediated delivery of water-insoluble therapeutics. ACS Nano. 3(7), 2016–2022 (2009)

    Article  CAS  Google Scholar 

  651. O. Faklaris, V. Joshi, T. Irinopoulou, P. Tauc, H. Girard, C. Gesset, M. Senour, A. Thorel, J.-C. Arnault, J.-P. Boudou, P.A. Curmi, F. Treussart, Determination of the internalization pathway of photoluminescent nanodiamonds in mammalian cells for biological labeling and optimization of the fluorescent yield. arXiv.org, e-Print Archive, Physics, 2009, pp. 1–24, arXiv:0907.1148v1 [physics.optics]

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kharisov, B.I., Kharissova, O.V. (2019). Classic Carbon Nanostructures. In: Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-03505-1_3

Download citation

Publish with us

Policies and ethics