Skip to main content

Fragmentation, Particle Growth and Single Particle Modelling

  • Chapter
  • First Online:
Multimodal Polymers with Supported Catalysts

Abstract

In processes that rely on the use of heterogeneous catalysis as the major means of production, it should be quite obvious that understanding how the catalyst particles evolve will play an important role in many aspects related to quality and reactor performance. At the risk of oversimplifying things, the principal roles of the heterogeneous catalyst particles used in olefin polymerisation can be seen as being (1) to carry the active sites upon which the polymer is formed; and (2) to provide a structure for creating “solid” particles that can be easily transported, recovered and processed. It is therefore important for us to understand how the process used to make the polymer impacts the particle and the active sites (and vice versa!). From the schema in Fig. 3.1, where these concepts are applied to a heterogeneously catalysed olefin polymerisation process, it can be seen that one needs to consider many different length scales, from the reactor which has volumes on the order of several tens of cubic metres, to the catalyst and polymer particles with characteristic diameters on the order of 10−6 to 10−3 m, and finally the active sites with characteristic sizes on the order of Ångströms. The figure also suggests that in many ways one can consider the catalyst and polymer particles as being at the heart of a polymerisation process. This is of course not to over-simplify the technological challenges of correctly operating the reactors, nor to assume that we have totally mastered the behaviour of the active sites either. However, as we shall see below, the very fact that we are using heterogeneous catalysts implies that mass transfer limitations can eventually limit the concentrations of active species at the active sites, or that the quality of the polymer (sticky/hard, brittle/flexible) can have a major impact on reactor behaviour. For these, and many other related reasons it is therefore of importance to understand what happens to the particles injected into the reactor during the polymerisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McKenna, T. F. L., Tioni, E., Ranieri, M. M., Alizadeh, A., Boisson, C., & Monteil, V. (2013). Catalytic olefin polymerisation at short times: Studies using specially adapted reactors. Canadian Journal of Chemical Engineering, 91, 669–686.

    Article  CAS  Google Scholar 

  2. Nagel, E. J., Kirillov, V. A., & Ray, W. H. (1980). Prediction of molecular weight distributions for high-density polyolefins. Industrial and Engineering Chemistry Product Research and Development, 19, 372–379.

    Article  CAS  Google Scholar 

  3. Tioni, E., Monteil, V., & McKenna, T. (2013). Morphological interpretation of the evolution of the thermal properties of polyethylene during the fragmentation of silica supported metallocene catalysts. Macromolecules, 46, 335–343.

    Article  CAS  Google Scholar 

  4. McDaniel, M. P. (2010). In C. G. A. H. Bruce (Ed.), Advances in catalysis. Cambridge, MA: Academic Press.

    Google Scholar 

  5. Abboud, M., Denifl, P., & Reichert, K. H. (2005). Advantages of an emulsion-produced Ziegler-Natta catalyst over a conventional Ziegler-Natta catalyst. Macromolecular Materials and Engineering, 290, 1220–1226.

    Article  CAS  Google Scholar 

  6. Abboud, M., Denifl, P., & Reichert, K. H. (2005). Study of the morphology and kinetics of novel Ziegler-Natta catalysts for propylene polymerization. Journal of Applied Polymer Science, 98, 2191–2200.

    Article  CAS  Google Scholar 

  7. Bartke, M., Oksman, M., Mustonen, M., & Denifl, P. (2005). A new heterogenization technique for single-site polymerization catalysts. Macromolecular Materials and Engineering, 290, 250–255.

    Article  CAS  Google Scholar 

  8. Kittilsen, P., Svendsen, H. F., & McKenna, T. F. (2003). Viscoelastic model for particle fragmentation in olefin polymerization. AICHE Journal, 49, 1495–1507.

    Article  CAS  Google Scholar 

  9. Grof, Z., Kosek, J., & Marek, M. (2005). Principles of the morphogenesis of polyolefin particles. Industrial and Engineering Chemistry Research, 44, 2389–2404.

    Article  CAS  Google Scholar 

  10. Grof, Z., osek, J., & arek, M. (2005). Modeling of morphogenesis of growing polyolefin particles. AICHE Journal, 51, 2048–2067.

    Article  CAS  Google Scholar 

  11. Llinas, J. R., & Selo, J. L. (2010). Method for reducing sheeting and agglomerates during olefin polymerisation. US20030144432A1.

    Google Scholar 

  12. Di Martino, A., Weickert, G., Sidoroff, F., & McKenna, T. F. L. (2007). Modelling induced tension in a growing catalyst/polyolefin particle: A multi-scale approach for simplified morphology modelling. Macromolecular Reaction Engineering, 1, 338–352.

    Article  CAS  Google Scholar 

  13. Yermakov, Y. I., Mikhalchenko, V. G., Beskov, V. S., Grabovskii, Y. P., & Emirova, I. V. (1970). The role of transfer processes in gaseous phase polymerization of ethylene. Plasticheskie Massy, 9, 7–10.

    Google Scholar 

  14. Laurence, R. L., & Chiovetta, M. G. (1983). In K. H. Reichert & W. Geisler (Eds.), Polymer reaction engineering: Influence of reaction engineering on polymer properties. Munich: Hanser.

    Google Scholar 

  15. McKenna, T. F., & Soares, J. B. P. (2001). Single particle modelling for olefin polymerization on supported catalysts: A review and proposals for future developments. Chemical Engineering Science, 56, 3931–3949.

    Article  CAS  Google Scholar 

  16. Parasu Veera, U., Weickert, G., & Agarwal, U. S. (2002). Modeling monomer transport by convection during olefin polymerization. AICHE Journal, 48, 1062–1070.

    Article  Google Scholar 

  17. Parasu Veera, U. (2003). Mass transport models for a single particle in gas-phase propylene polymerisation. Chemical Engineering Science, 58, 1765–1775.

    Article  CAS  Google Scholar 

  18. Soares, J. B. P., & McKenna, T. F. L. (2012). Polyolefin reaction engineering. Weinheim: Wiley.

    Book  Google Scholar 

  19. Jin, H. J., Kim, S., & Yoon, J. S. (2002). Solubility of 1-hexene in LLDPE synthesized by (2-MeInd)2ZrCl2/MAO and by Mg(OEt)2/DIBP/TiCl4-TEA. Journal of Applied Polymer Science, 84, 1566–1571.

    Article  CAS  Google Scholar 

  20. Kiparissides, C., Dimos, V., Boultouka, T., Anastasiadis, A., & Chasiotis, A. (2003). Experimental and theoretical investigation of solubility and diffusion of ethylene in semicrystalline PE at elevated pressures and temperatures. Journal of Applied Polymer Science, 87, 953–966.

    Article  CAS  Google Scholar 

  21. Maloney, D. P., & Prausnitz, J. M. (1976). Solubility of ethylene in liquid, low-density polyethylene at industrial-separation pressures. Industrial and Engineering Chemistry Process Design and Development, 15, 216–220.

    Article  CAS  Google Scholar 

  22. Moore, S. J., & Wanke, S. E. (2001). Solubility of ethylene, 1-butene and 1-hexene in polyethylenes. Chemical Engineering Science, 56, 4121–4129.

    Article  CAS  Google Scholar 

  23. Yoon, J. S., Yoo, H. S., & Kang, K. S. (1996). Solubility of a-olefins in linear low density polyethylenes. European Polymer Journal, 32, 1333–1336.

    Article  CAS  Google Scholar 

  24. Bashir, M. A., Al-haj Ali, M., Kanellopoulos, V., & Seppala, J. (2013). Modelling of multicomponent olefins solubility in polyolefins using Sanchez-Lacombe equation of state. Fluid Phase Equilibria, 358, 83–90.

    Article  CAS  Google Scholar 

  25. Yiagopoulos, A., Yiannoulakis, H., Dimos, V., & Kiparissides, C. (2001). Heat and mass transfer phenomena during the early growth of a catalyst particle in gas-phase olefin polymerization: The effect of prepolymerization temperature and time. Chemical Engineering Science, 56, 3979–3995.

    Article  CAS  Google Scholar 

  26. Khare, N. P., Lucas, B., Seavey, K. C., Liu, Y. A., Sirohi, A., Ramanathan, S., Lingard, S., Song, Y., & Chen, C. C. (2004). Steady-state and dynamic modeling of gas-phase polypropylene processes using stirred-bed reactors. Industrial and Engineering Chemistry Research, 43, 884–900.

    Article  CAS  Google Scholar 

  27. Novak, A., Bobak, M., Kosek, J., Banaszak, B. J., Lo, D., Widya, T., Harmon Ray, W., & de Pablo, J. J. (2006). Ethylene and 1-hexene sorption in LLDPE under typical gas-phase reactor conditions: Experiments. Journal of Applied Polymer Science, 100, 1124–1136.

    Article  CAS  Google Scholar 

  28. Serna, L. V., Becker, J. L., Galdímez, J. R., Danner, R. P., & Duda, J. L. (2008). Elastic effects on solubility in semicrystalline polymers. Journal of Applied Polymer Science, 107, 138–146.

    Article  CAS  Google Scholar 

  29. Bashir, M. A., Al-haj Ali, M., Kanellopoulos, V., Seppala, J., Kokko, E., & Vijay, S. (2013). The effect of pure component characteristic parameters on Sanchez-Lacombe equation-of-state predictive capabilities. Macromolecular Reaction Engineering, 7, 193–204.

    Article  CAS  Google Scholar 

  30. Kanellopoulos, V., Dompazis, G., Gustafsson, B., & Kiparissides, C. (2004). Comprehensive analysis of single-particle growth in heterogeneous olefin polymerization: The random-pore polymeric flow model. Industrial and Engineering Chemistry Research, 43, 5166–5180.

    Article  CAS  Google Scholar 

  31. Banaszak, B. J., Lo, D., Widya, T., Ray, W. H., de Pablo, J. J., Novak, A., & Kosek, J. (2004). Ethylene and 1-hexene sorption in LLDPE under typical gas phase reactor conditions: A priori simulation and modeling for prediction of experimental observations. Macromolecules, 37, 9139–9150.

    Article  CAS  Google Scholar 

  32. Bashir, M. A., Ali, M. A., Kanellopoulos, V., & Seppala, J. (2015). Combined EoS and elastic constraints models to predict thermodynamic properties for systems involving semi-crystalline polyolefins. Fluid Phase Equilibria, 388, 107–117.

    Article  CAS  Google Scholar 

  33. Michaels, A. S., & Hausslein, R. W. (1965). Elastic constraints in solvent swollen polyethylene. Journal of Polymer Science, Part B: Polymer Letters, 3, 61–62.

    Article  CAS  Google Scholar 

  34. Yao, W., Hu, X., & Yang, Y. (2007). Modeling the solubility of ternary mixtures of ethylene, iso-pentane, n-hexane in semicrystalline polyethylene. Journal of Applied Polymer Science, 104, 3654–3662.

    Article  CAS  Google Scholar 

  35. Desilets, M., Proulx, P., & Soucy, G. (1997). Modeling of multicomponent diffusion in high temperature flows. International Journal of Heat and Mass Transfer, 40, 4273–4278.

    Article  CAS  Google Scholar 

  36. Cussler, E. L. (1997). Diffusion mass transfer in fluid systems. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  37. Fujita, H. (1961). Fortschritte Der Hochpolymeren-Forschung. Berlin Heidelberg: Springer.

    Google Scholar 

  38. Michaels, A. S., & Bixler, H. J. (1961). Flow of gases through polyethylene. Journal of Polymer Science, 50, 413–439.

    Article  CAS  Google Scholar 

  39. Michaels, A. S., & Bixler, H. J. (1961). Solubility of gases in polyethylene. Journal of Polymer Science, 50, 393–412.

    Article  CAS  Google Scholar 

  40. Doong, S. J., & Ho, W. S. W. (1992). Diffusion of hydrocarbons in polyethylene. Industrial and Engineering Chemistry Research, 31, 1050–1060.

    Article  CAS  Google Scholar 

  41. Vrentas, J. S., Duda, J. L., & Ling, H. C. (1985). Free-volume theories for self-diffusion in polymer GÇô solvent systems. I. Conceptual differences in theories. Journal of Polymer Science Polymer Physics Edition, 23, 275–288.

    Article  CAS  Google Scholar 

  42. Vrentas, J. S., Duda, J. L., Ling, H. C., & Hou, A. C. (1985). Free-volume theories for self-diffusion in polymer-solvent systems. II. Predictive capabilities. Journal of Polymer Science Polymer Physics Edition, 23, 289–304.

    Article  CAS  Google Scholar 

  43. Pace, R. J., & Datyner, A. (1979). Statistical mechanical model for diffusion of simple penetrants in polymers. I. Theory. Journal of Polymer Science Polymer Physics Edition, 17, 437–451.

    Article  CAS  Google Scholar 

  44. Chiovetta, M. G., & Estenoz, D. A. (2004). Behavior of active sites in a changing, supported metallocene catalyst particle: Modeling monomer transport and kinetics. Macromolecular Materials and Engineering, 289, 1012–1026.

    Article  CAS  Google Scholar 

  45. Estenoz, D. A., & Chiovetta, M. G. (2001). Olefin polymerization using supported metallocene catalysts: Process representation scheme and mathematical model. Journal of Applied Polymer Science, 81, 285–311.

    Article  CAS  Google Scholar 

  46. Kittilsen, P., McKenna, T. F., Svendsen, H., Jakobsen, H. A., & Fredriksen, S. B. (2001). The interaction between mass transfer effects and morphology in heterogeneous olefin polymerization. Chemical Engineering Science, 56, 4015–4028.

    Article  CAS  Google Scholar 

  47. Ferrero, M. A., & Chiovetta, M. G. (1991). Catalyst fragmentation during propylene polymerization. III: Bulk polymerization process simulation. Polymer Engineering and Science, 31, 886–903.

    Article  CAS  Google Scholar 

  48. Ferrero, M. A., & Chiovetta, M. G. (1987). Catalyst fragmentation during propylene polymerization: Part II. Microparticle diffusion and reaction effects. Polymer Engineering and Science, 27, 1448–1460.

    Article  CAS  Google Scholar 

  49. McKenna, T. F., Dupuy, J., & Spitz, R. (1995). Modeling of transfer phenomena on heterogeneous Ziegler catalysts: Differences between theory and experiment in olefin polymerization (an introduction). Journal of Applied Polymer Science, 57, 371–384.

    Article  CAS  Google Scholar 

  50. Van Krevelen, D. W. (1997). Properties of polymers. Amsterdam: Elsevier.

    Book  Google Scholar 

  51. Floyd, S., Choi, K. Y., Taylor, T. W., & Ray, W. H. (1986). Polymerization of olefins through heterogeneous catalysis IV. Modeling of heat and mass transfer resistance in the polymer particle boundary layer. Journal of Applied Polymer Science, 31, 2231–2265.

    Article  CAS  Google Scholar 

  52. Constantinides, A., & Mostoufi, N. (1999). Numerical methods for chemical engineers with MATLAB applications. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  53. Villadsen, J., & Michelsen, L. (1978). Solution of differential equation models by polynomial approximation. Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

  54. Galvan, R., & Tirrell, M. (1986). Orthogonal collocation applied to analysis of heterogeneous Ziegler-Natta polymerization. Computers and Chemical Engineering, 10, 77–85.

    Article  CAS  Google Scholar 

  55. Floyd, S., Choi, K. Y., Taylor, T. W., & Ray, W. H. (1986). Polymerization of olefins through heterogeneous catalysis. III. Polymer particle modelling with an analysis of intraparticle heat and mass transfer effects. Journal of Applied Polymer Science, 32, 2935–2960.

    Article  CAS  Google Scholar 

  56. Hutchinson, R. A., Chen, C. M., & Ray, W. H. (1992). Polymerization of olefins through heterogeneous catalysis X: Modeling of particle growth and morphology. Journal of Applied Polymer Science, 44, 1389–1414.

    Article  CAS  Google Scholar 

  57. Ferrero, M. A., & Chiovetta, M. G. (1987). Catalyst fragmentation during propylene polymerization: Part I. The effects of grain size and structure. Polymer Engineering and Science, 27, 1436–1447.

    Article  CAS  Google Scholar 

  58. Sarkar, P., & Gupta, S. K. (1991). Modelling of propylene polymerization in an isothermal slurry reactor. Polymer, 32, 2842–2852.

    Article  CAS  Google Scholar 

  59. Nicolella, C., van Loosdrecht, M. C. M., & Heijnen, J. J. (1998). Mass transfer and reaction in a biofilm airlift suspension reactor. Chemical Engineering Science, 53, 2743–2753.

    Article  CAS  Google Scholar 

  60. Beers, K. J. (2007). Numerical methods for chemical engineering: Applications in MATLAB. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  61. Sarkar, P., & Gupta, S. K. (1992). Simulation of propylene polymerization: An efficient algorithm. Polymer, 33, 1477–1485.

    Article  CAS  Google Scholar 

  62. Bhagwat, M. S., Bhagwat, S. S., & Sharma, M. M. (1994). Mathematical modeling of the slurry polymerization of ethylene: Gas-liquid mass transfer limitations. Industrial and Engineering Chemistry Research, 33, 2322–2330.

    Article  CAS  Google Scholar 

  63. Schmeal, W. R., & Street, J. R. (1971). Polymerization in expanding catalyst particles. AICHE Journal, 17, 1188–1197.

    Article  CAS  Google Scholar 

  64. Singh, D., & Merrill, R. P. (1971). Molecular weight distribution of polyethylene produced by Ziegler-Natta catalysts. Macromolecules, 4, 599–604.

    Article  CAS  Google Scholar 

  65. Hoel, E. L., Cozewith, C., & Byrne, G. D. (1994). Effect of diffusion on heterogeneous ethylene propylene copolymerization. AICHE Journal, 40, 1669–1684.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy F. L. McKenna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McKenna, T.F.L., Bashir, M.A. (2019). Fragmentation, Particle Growth and Single Particle Modelling. In: Albunia, A., Prades, F., Jeremic, D. (eds) Multimodal Polymers with Supported Catalysts. Springer, Cham. https://doi.org/10.1007/978-3-030-03476-4_3

Download citation

Publish with us

Policies and ethics