Skip to main content

Students’ Aggregate Reasoning with Covariation

  • Chapter
  • First Online:
Topics and Trends in Current Statistics Education Research

Part of the book series: ICME-13 Monographs ((ICME13Mo))

Abstract

Helping students interpret and evaluate the relations between two variables is challenging. This chapter examines how students’ aggregate reasoning with covariation (ARwC) emerged while they modeled a real phenomenon and drew informal statistical inferences in an inquiry-based learning environment using TinkerPlotsTM. We focus in this illustrative case study on the emergent ARwC of two fifth-graders (aged 11) involved in statistical data analysis and modelling activities and in growing samples investigations . We elucidate four aspects of the students’ articulations of ARwC as they explored the relations between two variables in a small real sample and constructed and improved a model of the predicted relations in the population . We finally discuss implications and limitations of the results. This article contributes to the study of young students’ aggregate reasoning and the role of models in developing such reasoning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.tinkerplots.com

References

  • Ainley, J., Nardi, E., & Pratt, D. (2000). The construction of meanings for trend in active graphing. International Journal of Computers for Mathematical Learning, 5(2), 85–114.

    Article  Google Scholar 

  • Ainley, J., Pratt, D., & Hansen, A. (2006). Connecting engagement and focus in pedagogic task design. British Educational Research Journal, 32(1), 23–38.

    Article  Google Scholar 

  • Bakker, A. (2004). Design research in statistics education: On symbolizing and computer tools (A Ph.D. Thesis). Utrecht, The Netherlands: CD Beta Press.

    Google Scholar 

  • Bakker, A., Biehler, R., & Konold, C. (2004). Should young students learn about boxplots? In G. Burrill & M. Camden (Eds.), Curricular development in statistics education, IASE 2004 Roundtable on Curricular Issues in Statistics Education, Lund Sweden. Voorburg, The Netherlands: International Statistics Institute.

    Google Scholar 

  • Bakker, A., & Gravemeijer, K. P. E. (2004). Learning to reason about distributions. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning, and thinking (pp. 147–168). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Bakker, A., & Hoffmann, M. (2005). Diagrammatic reasoning as the basis for developing concepts: A semiotic analysis of students’ learning about statistical distribution. Educational Studies in Mathematics, 60, 333–358.

    Article  Google Scholar 

  • Batanero, C., Estepa, A., & Godino, J. D. (1997). Evolution of students’ understanding of statistical association in a computer based teaching environment. In J. B. Garfield & G. Burrill (Eds.), Research on the role of technology in teaching and learning statistics (pp. 191–205). Voorburg, The Netherlands: International Statistical Institute.

    Google Scholar 

  • Ben-Zvi, D., & Arcavi, A. (2001). Junior high school students’ construction of global views of data and data representations. Educational Studies in Mathematics, 45(1–3), 35–65.

    Article  Google Scholar 

  • Ben-Zvi, D., Aridor, K., Makar, K., & Bakker, A. (2012). Students’ emergent articulations of uncertainty while making informal statistical inferences. ZDM—The International Journal on Mathematics Education, 44(7), 913–925.

    Article  Google Scholar 

  • Ben-Zvi, D., Gravemeijer, K., & Ainley, J. (2018). Design of statistics learning environments. In D. Ben-Zvi., K. Makar & J. Garfield (Eds.), International handbook of research in statistics education. Springer international handbooks of education (pp. 473–502). Cham: Springer.

    Google Scholar 

  • Biehler, R., Ben-Zvi, D., Bakker, A., & Makar, K. (2013). Technology for enhancing statistical reasoning at the school level. In M. A. Clements, A. Bishop, C. Keitel, J. Kilpatrick, & F. Leung (Eds.), Third international handbook of mathematics education (pp. 643–690). Berlin: Springer.

    Chapter  Google Scholar 

  • Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events. Journal for Research in Mathematics Education, 33(5), 352–378.

    Article  Google Scholar 

  • Cobb, P., McClain, K., & Gravemeijer, K. P. E. (2003). Learning about statistical covariation. Cognition and Instruction, 21(1), 1–78.

    Article  Google Scholar 

  • Confrey, J., & Smith, E. (1994). Exponential functions, rates of change, and the multiplicative unit. In P. Cobb (Ed.), Learning mathematics (pp. 31–60). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Creswell, J. (2002). Educational research: Planning, conducting, and evaluating quantitative and qualitative research. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Dvir, M., & Ben-Zvi, D. (2018). The role of model comparison in young learners’ reasoning with statistical models and modeling. ZDM—International Journal on Mathematics Education. https://doi.org/10.1007/s11858-018-0987-4.

    Article  Google Scholar 

  • Freudenthal, H. (1991). Revisiting mathematics education. Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Friel, S. (2007). The research frontier: Where technology interacts with the teaching and learning of data analysis and statistics. In G. W. Blume & M. K. Heid (Eds.), Research on technology and the teaching and learning of mathematics (Vol. 2, pp. 279–331). Greenwich, CT: Information Age.

    Google Scholar 

  • Garfield, J., & Ben-Zvi, D. (2005). A framework for teaching and assessing reasoning about variability. Statistics Education Research Journal, 4(1), 92–99.

    Google Scholar 

  • Garfield, J., & Ben-Zvi, D. (2008). Developing students’ statistical reasoning: Connecting research and teaching practice. Berlin: Springer.

    Google Scholar 

  • Garfield, J., delMas, R. C., & Chance, B. (2007). Using students’ informal notions of variability to develop an understanding of formal measures of variability. In M. C. Lovett & P. Shah (Eds.), Thinking with data (pp. 87–116). New York: Lawrence Erlbaum.

    Google Scholar 

  • Gravemeijer, K. (1999). How emergent models may foster the constitution of formal mathematics. Mathematical Thinking and Learning, 1(2), 155–177.

    Article  Google Scholar 

  • Hancock, C., Kaput, J. J., & Goldsmith, L. T. (1992). Authentic enquiry with data: Critical barriers to classroom implementation. Educational Psychologist, 27(3), 337–364.

    Article  Google Scholar 

  • Konold, C. (2002). Teaching concepts rather than conventions. New England Journal of Mathematics, 34(2), 69–81.

    Google Scholar 

  • Konold, C., Higgins, T., Russell, S. J., & Khalil, K. (2015). Data seen through different lenses. Educational Studies in Mathematics, 88(3), 305–325.

    Article  Google Scholar 

  • Konold, C., & Miller, C. (2011). TinkerPlots (Version 2.0) [Computer software]. Key Curriculum Press. Online: http://www.keypress.com/tinkerplots.

  • Konold, C., & Pollatsek, A. (2002). Data analysis as the search for signals in noisy processes. Journal for Research in Mathematics Education, 33(4), 259–289.

    Article  Google Scholar 

  • Lehrer, R., & English, L. (2017). Introducing children to modeling variability. In D. Ben-Zvi, J. Garfield, & K. Makar (Eds.), International handbook of research in statistics education. Springer international handbooks of Education (pp. 229–260). Cham: Springer.

    Google Scholar 

  • Lehrer, R., & Schauble, L. (2004). Modelling natural variation through distribution. American Educational Research Journal, 41(3), 635–679.

    Article  Google Scholar 

  • Lehrer, R., & Schauble, L. (2012). Seeding evolutionary thinking by engaging children in modeling its foundations. Science Education, 96(4), 701–724.

    Article  Google Scholar 

  • Lesh, R., Carmona, G., & Post, T. (2002). Models and modelling. In D. Mewborn, P. Sztajn, D. White, H. Wiegel, R. Bryant, et al. (Eds.), Proceedings of the 24th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 89–98). Columbus, OH: ERIC Clearinghouse.

    Google Scholar 

  • Makar, K., Bakker, A., & Ben-Zvi, D. (2011). The reasoning behind informal statistical inference. Mathematical Thinking and Learning, 13(1), 152–173.

    Article  Google Scholar 

  • Makar, K., & Rubin, A. (2009). A framework for thinking about informal statistical inference. Statistics Education Research Journal, 8(1), 82–105.

    Google Scholar 

  • Makar, K., & Rubin, A. (2017). Research on inference. In D. Ben-Zvi., K. Makar, & J. Garfield (Eds.), International handbook of research in statistics education. Springer international handbooks of education (pp. 261–294). Cham: Springer.

    Google Scholar 

  • Moore, D. S. (2004). The basic practice of statistics (3rd ed.). New York: W.H. Freeman.

    Google Scholar 

  • Moritz, J. B. (2004). Reasoning about covariation. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning and thinking (pp. 227–256). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Pfannkuch, M., & Wild, C. (2004). Towards an understanding of statistical thinking. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning, and thinking (pp. 17–46). Dordrecht, Netherlands: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Reading, C., & Shaughnessy, C. (2004). Reasoning about variation. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning and thinking (pp. 201–226). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Rubin, A., Hammerman, J. K. L., & Konold, C. (2006). Exploring informal inference with interactive visualization software. In Proceedings of the Seventh International Conference on Teaching Statistics [CD-ROM], Salvador, Brazil. International Association for Statistical Education.

    Google Scholar 

  • Schauble, L. (1996). The development of scientific reasoning in knowledge-rich contexts. Developmental Psychology, 32(1), 102–119.

    Article  Google Scholar 

  • Schoenfeld, A. H. (2007). Method. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 69–107). Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • Shaughnessy, J. M. (2007). Research on statistics learning and reasoning. In F. K. Lester (Ed.), The second handbook of research on mathematics (pp. 957–1010). Charlotte: Information Age Publishing Inc.

    Google Scholar 

  • Siegler, R. S. (2006). Microgenetic analyses of learning. In D. Kuhn & R. S. Siegler (Eds.), Handbook of child psychology: Cognition, perception, and language (6th ed., Vol. 2, pp. 464–510). Hoboken, NJ: Wiley.

    Google Scholar 

  • Watkins, A. E., Scheaffer, R. L., & Cobb, G. W. (2004). Statistics in action: Understanding a world of data. Emeryville, CA: Key Curriculum Press.

    Google Scholar 

  • Wild, C. J., & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry (with discussion). International Statistical Review, 67, 223–265.

    Article  Google Scholar 

  • Zieffler, S. A., & Garfield, J. (2009). Modelling the growth of students’ covariational reasoning during an introductory statistical course. Statistics Education Research Journal, 8(1), 7–31.

    Google Scholar 

Download references

Acknowledgements

This research was supported by the University of Haifa and the I-CORE Program of the Planning and Budgeting Committee and the Israel Science Foundation grant 1716/12. We deeply thank the Cool-Connections research group who participated in the Connections project 2015, and in data analysis sessions of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keren Aridor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aridor, K., Ben-Zvi, D. (2019). Students’ Aggregate Reasoning with Covariation. In: Burrill, G., Ben-Zvi, D. (eds) Topics and Trends in Current Statistics Education Research. ICME-13 Monographs. Springer, Cham. https://doi.org/10.1007/978-3-030-03472-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03472-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03471-9

  • Online ISBN: 978-3-030-03472-6

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics