Skip to main content

Radiative Transfer of Light in Strongly Scattering Media

  • Chapter
  • First Online:
Springer Series in Light Scattering

Part of the book series: Springer Series in Light Scattering ((SSLS))

  • 773 Accesses

Abstract

Radiative transfer provides a complete description of absorption, scattering, and radiation of light in a multiple scattering medium (Chandrasekhar 1960; Ishimaru 1999; Van de Hulst 2012). Consequently, radiative transfer is important for several applications such as neutron transport (Bell and Glasstone 1970; Case and Zweifel 1967; Lewis and Miller 1984), astrophysics (Peraiah 2002; Sobolev 2017), geophysics (Tsang et al. 1985; Mobley 1994; Kirk 1994; Thomas and Stamnes 2002; Kokhanovsky 2006b; Marshak and Davis 2005; Mishchenko et al. 2006; Mishchenko 2014), heat transfer (Modest 2013), biomedical optics (Welch et al. 2011; Wang and Wu 2012), and computer graphics (Jensen 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aronson R (1986) \(P_{N}\) versus double-\(P_{N}\) approximations for highly anisotropic scattering. Transport Theor Stat 15(6–7):829–840

    Google Scholar 

  • Bell GI, Glasstone S (1970) Nuclear reactor theory. Van Nostrand Reinhold Co, New York

    Google Scholar 

  • Bender CM, Orszag SA (2013) Advanced mathematical methods for scientists and engineers I: asymptotic methods and perturbation theory. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  • Brinkworth B (1972) Interpretation of the Kubelka-Munk coefficients in reflection theory. Appl Opt 11(6):1434–1435

    Article  ADS  Google Scholar 

  • Case KM, Zweifel PF (1967) Linear transport theory. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Chandrasekhar S (1960) Radiative transfer. Dover, New York

    MATH  Google Scholar 

  • Courant R, Hilbert D (2008) Methods of mathematical physics, Vol. 2: differential equations. Wiley, New York

    MATH  Google Scholar 

  • Dark JP, Kim AD (2017) Asymptotic theory of circular polarization memory. J Opt Soc Am A 34(9):1642–1650

    Article  ADS  Google Scholar 

  • Edström P (2007) Examination of the revised Kubleka-Munk theory: considerations of modeling strategies. J Opt Soc Am A 24(2):548–556

    Article  ADS  Google Scholar 

  • Gao H, Zhao H (2009) A fast-forward solver of radiative transfer equation. Transp Theory Stat Phys 38(3):149–192

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Gate L (1974) Comparison of the photon diffusion model and Kubleka-Munk equation with the exact solution of the radiative transport equation. Appl Opt 13(2):236–238

    Article  ADS  Google Scholar 

  • Habetler G, Matkowsky B (1975) Uniform asymptotic expansions in transport theory with small mean free paths, and the diffusion approximation. J Math Phys 16(4):846–854

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hinch EJ (1991) Perturbation methods. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Ishimaru A (1999) Wave propagation and scattering in random media. Wiley-IEEE-Press, New York

    Book  MATH  Google Scholar 

  • Jensen HW (2001) Realistic image synthesis using photon mapping. A K Peters Ltd., Natick

    Book  MATH  Google Scholar 

  • Keller HB (1960) On the pointwise convergence of the discrete-ordinate method. J Soc Ind Appl Math 8(4):560–567

    Article  MathSciNet  Google Scholar 

  • Kim AD (2011) Correcting the diffusion approximation at the boundary. J Opt Soc Am A 28(6):1007–1015

    Article  ADS  Google Scholar 

  • Kim AD, Keller JB (2003) Light propagation in biological tissue. J Opt Soc Am A 20(1):92–98

    Article  ADS  Google Scholar 

  • Kim AD, Moscoso M (2011) Diffusion of polarized light. Multiscale Model Simul 9(4):1624–1645

    Article  MathSciNet  MATH  Google Scholar 

  • Kirk JT (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kokhanovsky A (2006a) Asymptotic radiative transfer. In: Light scattering reviews. Springer, Berlin, pp 253–289

    Google Scholar 

  • Kokhanovsky AA (2006b) Cloud optics. Springer, Berlin

    Book  Google Scholar 

  • Kokhanovsky AA (2007) Physical interpretation and accuracy of the Kubelka-Munk theory. J Phys D 40(7):2210

    Article  ADS  Google Scholar 

  • Kubelka P (1948) New contributions to the optics of intensely light-scattering materials. Part I. J Opt Soc Am 38(5):448–457

    Article  ADS  MathSciNet  Google Scholar 

  • Kubelka P, Munk F (1931) Ein Beitrag zur Optik der Farbanstriche. Z Tech Phys 12:593–601

    Google Scholar 

  • Larsen EW (1999) The linear Boltzmann equation in optically thick systems with forward-peaked scattering. Prog Nucl Energy 34(4):413–423

    Article  Google Scholar 

  • Larsen EW, Keller JB (1974) Asymptotic solution of neutron transport problems for small mean free paths. J Math Phys 15(1):75–81

    Article  ADS  MathSciNet  Google Scholar 

  • Lehtikangas O, Tarvainen T, Kim AD (2012) Modeling boundary measurements of scattered light using the corrected diffusion approximation. Biomed Opt Express 3(3):552–571

    Article  Google Scholar 

  • Lewis EE, Miller WF (1984) Computational methods of neutron transport. Wiley, New York

    MATH  Google Scholar 

  • Malvagi F, Pomraning G (1991) Initial and boundary conditions for diffusive linear transport problems. J Math Phys 32(3):805–820

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Marshak A, Davis A (2005) 3D radiative transfer in cloudy atmospheres. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  • Miller PD (2006) Applied asymptotic analysis. American Mathematical Society, Providence

    Book  MATH  Google Scholar 

  • Mishchenko MI (2014) Electromagnetic scattering by particles and particle groups: an introduction. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Mishchenko MI, Travis LD, Lacis AA (2006) Multiple scattering of light by particles: radiative transfer and coherent backscattering. Cambridge University Press, Cambridge

    Google Scholar 

  • Mobley CD (1994) Light and water: radiative transfer in natural waters. Academic Press, New York

    Google Scholar 

  • Modest MF (2013) Radiative heat transfer. Academic Press, New York

    Book  Google Scholar 

  • Molenaar R, Jaap J, Zijp JR (1999) Determination of Kubelka-Munk scattering and absorption coefficients by diffuse illumination. Appl Opt 38(10):2068–2077

    Article  ADS  Google Scholar 

  • Myrick ML, Simcock MN, Baranowski M, Brooke H, Morgan SL, McCutcheon JN (2011) The Kubelka-Munk diffuse reflectance formula revisited. Appl Spectrosc Rev 46(2):140–165

    Article  ADS  Google Scholar 

  • Neuman M, Edström P (2010) Anisotropic reflectance from turbid media. I. theory. J Opt Soc Am A 27(5):1032–1039

    Article  ADS  Google Scholar 

  • Nobbs JH (1985) Kubelka-Munk theory and the prediction of reflectance. Color Technol 15(1):66–75

    Article  Google Scholar 

  • Peraiah A (2002) An introduction to radiative transfer: methods and applications in astrophysics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Philips-Invernizzi B, Dupont D, Caze C (2001) Bibliographical review for reflectance of diffusing media. Opt Eng 40(6):1082–1092

    Article  ADS  Google Scholar 

  • Pomraning G, Ganapol B (1995) Asymptotically consistent reflection boundary conditions for diffusion theory. Ann Nucl Energy 22(12):787–817

    Article  Google Scholar 

  • Rohde SB, Kim AD (2012) Modeling the diffuse reflectance due to a narrow beam incident on a turbid medium. J Opt Soc Am A 29(3):231–238

    Article  ADS  Google Scholar 

  • Rohde S, Kim A (2014) Convolution model of the diffuse reflectance for layered tissues. Opt Lett 39(1):154–157

    Article  ADS  Google Scholar 

  • Rohde SB, Kim AD (2017) Backscattering of continuous and pulsed beams. Multiscale Model Simul 15(4):1356–1375

    Article  MathSciNet  MATH  Google Scholar 

  • Şahin-Biryol D, Ilan B (2014) Asymptotic solution of light transport problems in optically thick luminescent media. J Math Phys 55(6):061, 501

    Article  MathSciNet  MATH  Google Scholar 

  • Sandoval C, Kim AD (2014) Deriving Kubelka-Munk theory from radiative transport. J Opt Soc Am A 31(3):628–636

    Article  ADS  Google Scholar 

  • Schuster A (1905) Radiation through a foggy atmosphere. Astrophys J 21:1

    Article  ADS  Google Scholar 

  • Schwarzschild K (1906) On the equilibrium of the sun’s atmosphere. Nach König Gesell Wiss Göttingen Math-Phys Klasse, 195, p 41–53 195:41–53

    MATH  Google Scholar 

  • Sobolev VV (2017) Light scattering in planetary atmospheres: international series of monographs in natural philosophy, vol 76. Elsevier, Amsterdam

    Google Scholar 

  • Star W, Marijnissen J, Van Gemert M (1988) Light dosimetry in optical phantoms and in tissues: I. multiple flux and transport theory. Phys Med Biol 33(4):437

    Article  Google Scholar 

  • Thennadil SN (2008) Relationship between the Kubleka-Munk scattering and radiative transfer coefficients. J Opt Soc Am A 25(7):1480–1485

    Article  ADS  Google Scholar 

  • Thomas GE, Stamnes K (2002) Radiative transfer in the atmosphere and ocean. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Tsang L, Kong JA, Shin RT (1985) Theory of microwave remote sensing. Wiley-Interscience, New York

    Google Scholar 

  • Van de Hulst HC (2012) Multiple light scattering: tables, formulas, and applications. Elsevier, Amsterdam

    Google Scholar 

  • Vargas WE, Niklasson GA (1997) Applicability conditions of the Kubelka-Munk theory. Appl Opt 36(22):5580–5586

    Article  ADS  Google Scholar 

  • Wang LV, Hi Wu (2012) Biomedical optics: principles and imaging. Wiley, New York

    Google Scholar 

  • Welch AJ, Van Gemert MJ et al (2011) Optical-thermal response of laser-irradiated tissue, vol 2. Springer, Berlin

    Book  Google Scholar 

  • Yang L, Kruse B (2004) Revised Kubelka-Munk theory. I. Theory and application. J Opt Soc Am A 21(10):1933–1941

    Article  ADS  Google Scholar 

  • Yang L, Miklavcic SJ (2005) Revised Kubelka-Munk theory III. A general theory of light propagation in scattering and absorptive media. J Opt Soc Am A 22(9):1866–1873

    Article  ADS  Google Scholar 

  • Yang L, Kruse B, Miklavcic SJ (2004) Revised Kubelka-Munk theory. II. Unified framework for homogeneous and inhomogeneous optical media. J Opt Soc Am A 21(10):1942–1952

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A. D. Kim acknowledges support from the Air Force Office of Scientific Research (FA9550-17-1-0238).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold D. Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ilan, B., Kim, A.D. (2019). Radiative Transfer of Light in Strongly Scattering Media. In: Kokhanovsky, A. (eds) Springer Series in Light Scattering. Springer Series in Light Scattering. Springer, Cham. https://doi.org/10.1007/978-3-030-03445-0_2

Download citation

Publish with us

Policies and ethics