Skip to main content

Challenges Associated with Bacillus anthracis as a Bio-threat Agent

  • Chapter
  • First Online:
Defense Against Biological Attacks

Abstract

In nature, Anthrax is a zoonotic disease caused by the gram-positive spore-forming bacterium Bacillus anthracis usually infecting grazing animals. Taking advantage of their stability and ability to survive harsh conditions for decades, this deadly bacterium was stockpiled during the twentieth century as a bio-weapon by the great nations. The 1972 convention that prohibited the development, production and stockpiling of bio-weapons reduced these nation-level productions but increased the probability that knowhow, and in some cases weapon grade spores, will become available for use by terror groups, thus creating a new threat—bio-terror. In modern history there were two documented bio-terror events as well as one accidental discharge from an army facility and other industrial exposures that resulted in human exposure to B. anthracis spores. These incidents demonstrate the power of B. anthracis spores as a bio-terror agent and the challenges that are associated with such release/use. In this chapter, we will use the published data regarding these events together with experimental data obtained from animal experiments, to discuss the challenges associated with the use of B. anthracis spores as a bio-terror agent and the ways to counteract them. We will go through the different challenges of patient diagnosis and treatment, discuss the challenges of monitoring the environment and decontamination. In addition we will describe the available forensic tools and discuss the challenges of identifying spore production prior to dissemination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanna P. Anthrax pathogenesis and host response. Curr Top Microbiol Immunol. 1998;225:13–35.

    CAS  PubMed  Google Scholar 

  2. Dixon TC, et al. Anthrax. N Engl J Med. 1999;341(11):815–26.

    Article  CAS  PubMed  Google Scholar 

  3. Sitali DC, et al. Awareness and attitudes towards anthrax and meat consumption practices among affected communities in Zambia: a mixed methods approach. PLoS Negl Trop Dis. 2017;11(5):e0005580.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sirisanthana T, Brown AE. Anthrax of the gastrointestinal tract. Emerg Infect Dis. 2002;8(7):649–51.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Owen JL, Yang T, Mohamadzadeh M. New insights into gastrointestinal anthrax infection. Trends Mol Med. 2015;21(3):154–63.

    Article  CAS  PubMed  Google Scholar 

  6. Brachman PC. Inhalation anthrax. Ann N Y Acad Sci. 1980;353:11.

    Article  Google Scholar 

  7. Spencer RC. Bacillus anthracis. J Clin Pathol. 2003;56(3):182–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Okinaka RT, Keim P. The Phylogeny of Bacillus cereus sensu lato. Microbiol Spectr. 2016;4(1):TBS-0012-2012.

    Article  Google Scholar 

  9. Ganz HH, et al. Interactions between Bacillus anthracis and plants may promote anthrax transmission. PLoS Negl Trop Dis. 2014;8(6):e2903.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liu S, Moayeri M, Leppla SH. Anthrax lethal and edema toxins in anthrax pathogenesis. Trends Microbiol. 2014;22(6):317–25.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fouet A. The surface of Bacillus anthracis. Mol Asp Med. 2009;30(6):374–85.

    Article  CAS  Google Scholar 

  12. Moayeri M, Leppla SH. Cellular and systemic effects of anthrax lethal toxin and edema toxin. Mol Asp Med. 2009;30(6):439–55.

    Article  CAS  Google Scholar 

  13. Szablewski CM, et al. Anthrax cases associated with animal-hair shaving brushes. Emerg Infect Dis. 2017;23(5):806–8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dahlgren CM, et al. Bacillus anthracis aerosols in goat hair processing mills. Am J Hyg. 1960;72:24–31.

    CAS  PubMed  Google Scholar 

  15. Kissling E, et al. B. anthracis in a wool-processing factory: seroprevalence and occupational risk. Epidemiol Infect. 2012;140(5):879–86.

    Article  CAS  PubMed  Google Scholar 

  16. Glassman HN. Discussion. Bacteriol Rev. 1966;30(3):657–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Druett HA, et al. Studies on respiratory infection: II. The influence of aerosol particle size on infection of the guinea-pig with Pasteurella pestis. J Hyg. 1956;54(1):37–48.

    Article  CAS  PubMed  Google Scholar 

  18. WHO. Anthrax in humans and animals. World Health Organization, 2008.

    Google Scholar 

  19. Schmitt K, Zacchia NA. Total decontamination cost of the anthrax letter attacks. Biosecur Bioterror. 2012;10(1):98–107.

    Article  PubMed  Google Scholar 

  20. Meselson M, et al. The Sverdlovsk anthrax outbreak of 1979. Science. 1994;266(5188):1202–8.

    Article  CAS  PubMed  Google Scholar 

  21. Consequences of alleged 1979 Sverdlovsk Anthrax outbreak explored, 1990.

    Google Scholar 

  22. Keim P, et al. Molecular investigation of the Aum Shinrikyo anthrax release in Kameido, Japan. J Clin Microbiol. 2001;39(12):4566–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jernigan DB, et al. Investigation of bioterrorism-related anthrax, United States, 2001: epidemiologic findings. Emerg Infect Dis. 2002;8(10):1019–28.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dull PM, et al. Bacillus anthracis aerosolization associated with a contaminated mail sorting machine. Emerg Infect Dis. 2002;8(10):1044–7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Justice, T.U.S.D.o., Amerithrax investigative summary, T.U.S.D.o. Justice, Editor, 2010; p. 96.

    Google Scholar 

  26. Brookmeyer R, Blades N. Prevention of inhalational anthrax in the U.S. outbreak. Science. 2002;295(5561):1861.

    Article  CAS  PubMed  Google Scholar 

  27. Jernigan JA, et al. Bioterrorism-related inhalational anthrax: the first 10 cases reported in the United States. Emerg Infect Dis. 2001;7(6):933–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heller MB, et al. Laboratory response to anthrax bioterrorism, New York City, 2001. Emerg Infect Dis. 2002;8(10):1096–102.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Council NR. Reopening public facilities after a biological attack: a decision making framework, vol. 224. Washington, DC: The National Academies Press; 2005.

    Google Scholar 

  30. CDC. Anthrax. Available from: https://www.cdc.gov/anthrax/index.html

  31. Abramova FA, et al. Pathology of inhalational anthrax in 42 cases from the Sverdlovsk outbreak of 1979. Proc Natl Acad Sci USA. 1993;90(6):2291–4.

    Article  CAS  PubMed  Google Scholar 

  32. Goossens PL. Animal models of human anthrax: The Quest for the Holy Grail. Mol Asp Med. 2009;30(6):467–80.

    Article  CAS  Google Scholar 

  33. Welkos S, et al. Animal models for the pathogenesis, treatment, and prevention of infection by Bacillus anthracis. Microbiol Spectr. 2015;3(1):TBS-0001-2012.

    PubMed  Google Scholar 

  34. Beasley DWC, Brasel TL, Comer JE. First vaccine approval under the FDA animal rule. NPJ Vaccines. 2016;1:16013.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kobiler D, et al. Protective antigen as a correlative marker for anthrax in animal models. Infect Immun. 2006;74(10):5871–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Twenhafel NA. Pathology of inhalational anthrax animal models. Vet Pathol. 2010;47(5):819–30.

    Article  CAS  PubMed  Google Scholar 

  37. Levy H, et al. The central nervous system as target of Bacillus anthracis toxin independent virulence in rabbits and guinea pigs. PLoS One. 2014;9(11):e112319.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vasconcelos D, et al. Pathology of inhalation anthrax in cynomolgus monkeys (Macaca fascicularis). Lab Investig. 2003;83(8):1201–9.

    Article  PubMed  Google Scholar 

  39. Vietri NJ, et al. A short course of antibiotic treatment is effective in preventing death from experimental inhalational anthrax after discontinuing antibiotics. J Infect Dis. 2009;199(3):336–41.

    Article  CAS  PubMed  Google Scholar 

  40. Altboum Z, et al. Postexposure prophylaxis against anthrax: evaluation of various treatment regimens in intranasally infected guinea pigs. Infect Immun. 2002;70(11):6231–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Weiss S, et al. Efficacy of single and combined antibiotic treatments of anthrax in rabbits. Antimicrob Agents Chemother. 2015;59(12):7497–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Weiss S, et al. Antibiotics cure anthrax in animal models. Antimicrob Agents Chemother. 2011;55(4):1533–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Boyer AE, et al. Detection and quantification of anthrax lethal factor in serum by mass spectrometry. Anal Chem. 2007;79(22):8463–70.

    Article  CAS  PubMed  Google Scholar 

  44. Gates-Hollingsworth MA, et al. Immunoassay for capsular antigen of Bacillus anthracis enables rapid diagnosis in a rabbit model of inhalational anthrax. PLoS One. 2015;10(5):e0126304.

    Article  PubMed  PubMed Central  Google Scholar 

  45. CDC, Anthrax (Bacillus anthracis) 2010 Case Definition 2010, CDC.

    Google Scholar 

  46. Quinn CP, et al. Specific, sensitive, and quantitative enzyme-linked immunosorbent assay for human immunoglobulin G antibodies to anthrax toxin protective antigen. Emerg Infect Dis. 2002;8(10):1103–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hendricks KA, et al. Centers for disease control and prevention expert panel meetings on prevention and treatment of anthrax in adults. Emerg Infect Dis. 2014;20(2)

    Google Scholar 

  48. Turnbull PCB, et al. MICs of selected antibiotics for Bacillus anthracis, Bacillus cereus, Bacillus thuringiensis, and Bacillus mycoides from a range of clinical and environmental sources as determined by the etest. J Clin Microbiol. 2004;42(8):3626–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Heine HS, et al. Evaluation of combination drug therapy for treatment of antibiotic-resistant inhalation anthrax in a murine model. Antimicrob Agents Chemother. 2017;61(9)

    Google Scholar 

  50. EPA, multiple daily low-dose Bacillus anthracis Ames inhalation exposures in the rabbit, T.U.S.E.P. Agency, Editor. 2012.

    Google Scholar 

  51. Henning LN, et al. Development of an inhalational Bacillus anthracis exposure therapeutic model in cynomolgus macaques. Clin Vaccine Immunol. 2012;19(11):1765–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Friedlander AM, et al. Postexposure prophylaxis against experimental inhalation anthrax. J Infect Dis. 1993;167(5):1239–43.

    Article  CAS  PubMed  Google Scholar 

  53. Bresnitz EA. Lessons learned from the CDC’s post-exposure prophylaxis program following the anthrax attacks of 2001. Pharmacoepidemiol Drug Saf. 2005;14(6):389–91.

    Article  PubMed  Google Scholar 

  54. Knudson GB. Treatment of anthrax in man: historical and current concepts. U.S.A.M.R.I.o.I. Diseases, Editor. 1985.

    Google Scholar 

  55. Pillai SK, et al. Antimicrobial treatment for systemic anthrax: analysis of cases from 1945 to 2014 identified through a systematic literature review. Health Secur. 2015;13(6):355–64.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Riedel S. Anthrax: a continuing concern in the era of bioterrorism. Proc (Bayl Univ Med Cent). 2005;18(3):234–43.

    Article  Google Scholar 

  57. Bower WA, et al. Clinical framework and medical countermeasure use during an anthrax mass-casualty incident. MMWR Recomm Rep. 2015;64(4):1–22.

    Article  PubMed  Google Scholar 

  58. Cunha AB. Anthrax treatment & management. Medscape, 2016.

    Google Scholar 

  59. Xu W, et al. A systematic review and meta-analysis of preclinical trials testing anti-toxin therapies for B. anthracis infection: a need for more robust study designs and results. PLoS One. 2017;12(8):e0182879.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Glinert I, et al. Revisiting the concept of targeting only Bacillus anthracis toxins as a treatment for anthrax. Antimicrob Agents Chemother. 2016;60(8):4878–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. CDC. Update: investigation of bioterrorism-related anthrax and interim guidelines for clinical evaluation of persons with possible anthrax, in MMWR. Centers for disease control and prevention, 2001; p. 8.

    Google Scholar 

  62. Greene CM, et al. Epidemiologic investigations of bioterrorism-related anthrax, New Jersey, 2001. Emerg Infect Dis. 2002;8(10):1048–55.

    Article  PubMed  PubMed Central  Google Scholar 

  63. CCR. Anthrax in America: a chronology and analysis of the fall 2001 attacks. Center for Counterproliferation Research; 2002.

    Google Scholar 

  64. Pile JC, et al. Anthrax as a potential biological warfare agent. Arch Intern Med. 1998;158(5):429–34.

    Article  CAS  PubMed  Google Scholar 

  65. CDC, Sentinel level clinical microbiology laboratory guidelines for suspected agents of bioterrorism and emerging infectious diseases – Bacillus anthracis 2010.

    Google Scholar 

  66. Ozanich RM, et al. Evaluation of PCR systems for field screening of Bacillus anthracis. Health Secur. 2017;15(1):70–80.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bartholomew RA, et al. Evaluation of immunoassays and general biological indicator tests for field screening of Bacillus anthracis and Ricin. Health Secur. 2017;15(1):81–96.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Riojas MA, et al. Multiplex PCR for species-level identification of Bacillus anthracis and detection of pXO1, pXO2, and related plasmids. Health Secur. 2015;13(2):122–9.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Koczula KM, Gallotta A. Lateral flow assays. Essays Biochem. 2016;60(1):111–20.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Fisher M, et al. A combined immunomagnetic separation and lateral flow method for a sensitive on-site detection of Bacillus anthracis spores – assessment in water and dairy products. Lett Appl Microbiol. 2009;48(4):413–8.

    Article  CAS  PubMed  Google Scholar 

  71. Tetracore. BioThreat Alert® Reader. Available from: http://www.tetracore.com/bio-warfare/index.html

  72. Weis CP, et al. Secondary aerosolization of viable Bacillus anthracis spores in a contaminated US Senate Office. JAMA. 2002;288(22):2853–8.

    Article  PubMed  Google Scholar 

  73. Ferrari N, et al. Bone marrow-derived, endothelial progenitor-like cells as angiogenesis-selective gene-targeting vectors. Gene Ther. 2003;10(8):647–56.

    Article  CAS  PubMed  Google Scholar 

  74. Council NR. Review of the scientific approaches used during the FBI’s investigation of the 2001 anthrax letters. Washington, DC: The National Academies Press, 2011; p. 232.

    Google Scholar 

  75. GAO. Capitol Hill Anthrax Incident, C.o.F. Report to the Chairman, U.S. Senate, Editor, 2003.

    Google Scholar 

  76. EPA. Federal on-scene coordinator’s report for the Capitol Hill Site Washington, DC, P. United States Environmental Protection Agency Region 3 Philadelphia, Editor, 2002.

    Google Scholar 

  77. Office, U.S.G.A., Capitol hill anthrax incident EPA’s cleanup was successful; opportunities exist to enhance contract oversight, C.o.F. Report to the Chairman, U.S. Senate, Editor, 2003.

    Google Scholar 

  78. Canter DA. Addressing residual risk issues at anthrax cleanups: how clean is safe? J Toxicol Environ Health A. 2005;68(11–12):1017–32.

    Article  CAS  PubMed  Google Scholar 

  79. Brief, E.t., review of Bacillus anthracis (anthrax) studies for dose-response modeling to estimate risk, U.S.E.P. Agency, Editor, 2012.

    Google Scholar 

  80. Brachman PS, et al. An epidemic of inhalation anthrax: The first in the twentieth century epidemiology. Am J Epidemiol. 1960;72(1):6–23.

    Article  CAS  Google Scholar 

  81. Medicine, I.o., Prepositioning antibiotics for anthrax, ed. C. Stroud, et al. Washington, DC: The National Academies Press, 2012; p. 358.

    Google Scholar 

  82. PriMED, Anthrax – Russia (10): (Yamal-Nenets) Human, Reindeer Vaccinated, 2016.

    Google Scholar 

  83. illumina, An introduction to next-generation sequencing technology.

    Google Scholar 

  84. Rasko DA, et al. Bacillus anthracis comparative genome analysis in support of the Amerithrax investigation. Proc Natl Acad Sci USA. 2011;108(12):5027–32.

    Article  CAS  PubMed  Google Scholar 

  85. Sammon C, et al. A survey of use of the emergency department during a local public health crisis. Ann Emerg Med. 2002;40(2):1.

    Google Scholar 

  86. Keim P, et al. The genome and variation of Bacillus anthracis. Mol Asp Med. 2009;30(6):397–405.

    Article  CAS  Google Scholar 

  87. ProMED, Anthrax – Kenya: foiled anthrax attack, suspected Islamic State, 2016.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haim Levy .

Editor information

Editors and Affiliations

Ethics declarations

The opinions, conclusions, and recommendations expressed or implied within are solely those of the authors and do not necessarily represent the views of the Israel Institute for Biological research, or any other Israeli Government agency.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Levy, H. et al. (2019). Challenges Associated with Bacillus anthracis as a Bio-threat Agent. In: Singh, S., Kuhn, J. (eds) Defense Against Biological Attacks. Springer, Cham. https://doi.org/10.1007/978-3-030-03071-1_5

Download citation

Publish with us

Policies and ethics