Skip to main content

Disaster Monitoring and Management

  • Chapter
  • First Online:

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

Since time immemorial, natural disasters have continued to plague the history of mankind. They have varied in type, frequency, coverage and severity ranging from earthquakes, landslides, droughts, floods, tornadoes, hurricanes, tsunamis, volcanic eruptions etc. Over the last century, the frequency, severity and impact of natural disasters has increased substantially.

“The greatest exploiter for all of us are floods today, droughts tomorrow, earthquake some times and all of these multiply our trauma of deprivation, pains of poverty and hunger. These disasters take away not only our crops, shelters, lives of our families, friends tattles, but also destroy our hopes and dreams of the future. Is there any event comparable to these, which causes so much human sufferings and injustice?” This is the cry in bewilderment of a common farmer of Koshi River basin, Bihar (India) in the midst of recurrent floods and droughts

—Jayaraman [1]

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://edition.cnn.com/2012/10/29/travel/hurricane-sandy-flight-cancellations/index.html.

  2. 2.

    http://www.disasterscharter.org/.

  3. 3.

    http://www.un.org/events/unispace3/.

  4. 4.

    http://www.disasterscharter.org/web/charter/activate.

  5. 5.

    http://www.emdat.net.

  6. 6.

    Source: Paroscientific Inc., http://www.paroscientific.com.

  7. 7.

    More on information can be found by visiting http://www.paroscientific.com.

  8. 8.

    see e.g., http://sealevel.jpl.nasa.gov/science/elninopdo/latestdata/.

  9. 9.

    http://en.wikipedia.org/wiki/File:1997_El_Nino_TOPEX.jpg.

  10. 10.

    http://en.wikipedia.org/wiki/File:1997_El_Nino_TOPEX.jpg.

  11. 11.

    http://www.fews.net/Pages/default.aspx.

  12. 12.

    http://www.bom.gov.au/tsunami/about/atws.shtml.

  13. 13.

    http://www.gsi.go.jp/ENGLISH/page_e30068.html.

  14. 14.

    http://www.gsi.go.jp/ENGLISH/page_e30068.html.

  15. 15.

    see e.g., http://www.bom.gov.au/tsunami/about/atws.shtml.

  16. 16.

    see http://www.gtz.de/en/21020.htm.

  17. 17.

    http://www.gdgps.net/products/great-alert.html. Accessed on 21/9/2011.

  18. 18.

    http://www.bom.gov.au/tsunami/about/atws.shtml.

  19. 19.

    Interferometric Synthetic Aperture Radar.

  20. 20.

    Differential Synthetic Aperture Radar Interferometry.

References

  1. Jayaraman V, Chandrasekhar MG, Rao UR (1997) Managing the Natural Disasters from Space Technology Inputs. Elsevier Science Ltd., Great Britain

    Book  Google Scholar 

  2. Bankoff G, Frerks G, Hilhorst D (Eds) (2003) Mapping vulnerability: disasters, development and people. ISBN ISBN 1-85383-964-7

    Google Scholar 

  3. Wisner B, Blaikie P, Cannon T, Davis I (2004) At risk - natural hazards, people’s vulnerability and disasters. Routledge, Wiltshire. ISBN ISBN 0-415-25216-4

    Google Scholar 

  4. Ballesteros LF (2008) What determines a disaster? 54 Pesos, Sep 2008:54 Pesos 11 Sep 2008. http://54pesos.org/2008/09/11/what-determines-a-disaster/ (Accessed on 12/05/2011)

  5. Alexander D (2002) Principles of emergency planning and management. Terra publishing, Harpended. ISBN ISBN 1-903544-10-6

    Google Scholar 

  6. Terhorst A, Moodley D, ISimonis I, Frost P, McFerren G, Roos S, van den Bergh F, (2008) Using the sensor web to detect and monitor the spread of vegetation fires in southern Africa. In: Nittel S, Labrinidis A, Stefanidis A (eds) GeoSensor Networks, vol 4540. Lecture Notes in Computer Science. Springer, Berlin, pp 239–251

    Google Scholar 

  7. Agutu N, Awange JL, Zerihun A, Ndehedehe C, Kuhn M, Fukuda Y (2017) Assessing multi-satellite remote sensing, reanalysis, and land surface models’ products in characterizing agricultural drought in East Africa. Remote Sens Environ 194:287302. https://doi.org/10.1016/j.rse.2017.03.041

    Article  Google Scholar 

  8. Awange JL, Aluoch J, Ogallo L, Omulo M, Omondi P (2007) Frequency and severity of drought in the Lake Victoria region (Kenya) and its effects on food security. Clim Res 33:135–142. https://doi.org/10.3354/cr033135

    Article  Google Scholar 

  9. Barrett CB (2002) Food security and food assistance programs. In: Gardner B, Rausser G (eds) Handbook of agricultural economics, vol 2. Elsevier Science, Amsterdam, pp 2103–2190

    Google Scholar 

  10. Kadomura H (1994) Climate changes, drought, desertification and land degradation in the Sudano-Sahelian region: a historic geographical perspective. In: Kadomura H (ed) Savannization process in tropical Africa. Tokyo Metropolitan University, II, Country briefs, pp 203–228

    Google Scholar 

  11. Steede-Terry K (2000) Integrating GIS and the global positioning system. ESRI Press, California

    Google Scholar 

  12. James LF, Young JA, Sanders K (2003) A New approach to monitoring rangelands. Arid Land Res Manage 17:319–328. https://doi.org/10.1080/15324980390225467

    Article  Google Scholar 

  13. Nittel S, Stefanidis A, Cruz I, Egenhofer M, Goldin D, Howard A, Labrinidis A, Madden S, Voisard A, Worboys M (2004) Report from the first workshop on Geo Sensor Networks. ACM SIGMOD Record 33(1)

    Google Scholar 

  14. Worboys M, Duckham M (2006) Monitoring qualitative spatiotemporal change for geosensor networks. Int J Geographi Inf Sci 20(10):1087–1108. https://doi.org/10.1080/13658810600852180

    Article  Google Scholar 

  15. Stefanidis A (2006) The emergence of geoSensor networks. Directions Magazine. http://www.directionsmag.com/articles/the-emergence-of-geosensor-networks/123208 (Accessed on 22/01/2011)

  16. Bill R (2011) Precise positioning in ad hoc geosensor newtorks. http://www.ikg.uni-hannover.de/geosensor/Lecture/Wednesday/Session1/sess1_bill.pdf (Accessed on 22/01/2011)

  17. Ailamaki A, Faloutsos C, Fischbeck P, Small M, VanBriesen J (2003) An environmental sensor network to determine drinking water quality and security. SIGMOD Record 32(4):47–52. https://doi.org/10.1145/959060.959069

    Article  Google Scholar 

  18. Brenner C (2011) Geo Sensor Networks-When and How? http://dgk.auf.uni-rostock.de/uploads/media/2_2-Brenner.pdf (Accessed on 22/01/2011)

  19. Nittel S, Labrinidis A, Stefanidis A (eds) (2008) GeoSensor Networks, vol 4540. Lecture Notes in Computer Science vol. Springer, Berlin, pp 1–6

    Google Scholar 

  20. Hammond WC, Brooks BA, Bürgmann R, Heaton T, Jackson M, Lowry AR, Anandakrishnan S (2011) Scientific value of real-time Global Positioning System data. Eos 92(15):125–126. https://doi.org/10.1029/2011EO150001

    Article  Google Scholar 

  21. Allenbach B, Andreoli R, Battiston S, Bestault C, Clandillon S, Fellah K, Henry JB, Meyer C, Scius H, Tholey N, Ysou H, de Fraipont P (2005) Rapid EO disaster mapping service: added value, feedback and perspectives after 4 Years of Charter Actions. In: IGARSS05 Proceedings: 4373-4378

    Google Scholar 

  22. Voigt S, Riedlinger T, Reinartz P, Knzer C, Kiefl R, Kemper T, Mehl H (2005) Experience and Perspective of Providing Satellite Based Crisis Information, Emergency Mapping and Disaster Monitoring Information to Decision Makers and Relief Workers. In: Zlatanova S, Fendel E (eds) van Oosterom P. Springer, Geoinformation for Disaster Management, pp 519–531

    Google Scholar 

  23. Buehler YA, Kellenber TW (2007) Development of processing chains for rapid mapping with satellite data. In Geomatics solutions for disaster management. In: Li J, Zlatanova S, Fabbri A (eds) Lecture Notes in Geoinformation and Cartography. Springer Verlag. pp 16-36

    Google Scholar 

  24. Jeyaseelan AT (2004) Droughts and Floods Assessment and Monitoring Using Remote Sensing and GIS. Satell Remote Sens GIS Appl Agric Meteorol 291-313

    Google Scholar 

  25. Zhanga J, Zhoub C, Xua K, Watanabe M (2002) Flood disaster monitoring and evaluation in China. Env Hazards 4:33–43. https://doi.org/10.1016/S1464-2867(03)00002-0

    Article  Google Scholar 

  26. Leavitt WM, Kiefer JJ (2006) Infrastructure interdependency and the creation of a normal disaster: the case of Hurricane Katrina and the City of New Orleans. J Public Works Manag Policy 10(4):306–314

    Article  Google Scholar 

  27. Scofield RA, Achutuni R (1996) The satellite forecasting funnel approach for predicting flash floods. Remote Sens Rev 14:251–282

    Article  Google Scholar 

  28. Webster TL, Forbes DL, Dickie S, Shreenan R (2004) Using topographic LiDAR to map flood risk from storm-surge events for Charlottetown, Prince Edward Island, Canada. Can J Remote Sens 30:64–76

    Article  Google Scholar 

  29. Awange JL, Fukuda Y (2003) On possible use of GPS-LEO satellite for flood forecasting. Accepted to the international civil engineering conference on sustainable development in the 21st century “The civil engineer in development” 12-16 August 2003 Nairobi, Kenya

    Google Scholar 

  30. Baker HC, Dodson AH, Penna NT, Higgins M, Offiler D (2001) Ground-based GPS water vapour estimation: potential for meteorological forecasting. J Atmos Solar-Terrestrial Phys 63(12):1305–1314

    Article  Google Scholar 

  31. US Army Corps of Engineers (2007) NAVSTAR Global Positioning System surveying. Eng Des Manual EM 1110-1-1003

    Google Scholar 

  32. Crétaux J-F, Leblanc M, Tweed S, Calmant S and Ramillien G (2007) Combining of Radar and laser altimetry, MODIS Remote Sensing and GPS for the monitoring of flood events: application to the flood plain of the Diamantina river. Geophys Res Abs 9:07496. SRef-ID: 1607-7962/gra/EGU2007-A-07496

    Google Scholar 

  33. Trenberth KE (1997) The definition of El Niño. Bulletin of the Am Meteorol Soc 78:2771–2777

    Article  Google Scholar 

  34. Trenberth K, Guillemot C (1996) Evaluation of the atmospheric moisture and hydrological cycle in the NCEP Reanalyses. NCAR Technical Note TN-430, December

    Google Scholar 

  35. Becker M, Llowel W, Cazenave A, Güntner A, Crétaux J-F (2010) Recent hydrological behaviour of the East African Great Lakes region inferred from GRACE, satellite altimetry and rainfall observations. C R Geosci 342(3):223–233. https://doi.org/10.1016/j.crte.2009.12.010

    Article  Google Scholar 

  36. Garcia-Garcia D, Ummenhofer CC, Zlotnicki V (2011) Australian water mass variations from GRACE data linked to Indo-Pacific climate variability. Remote Sens Env 115:2175–2183. https://doi.org/10.1016/j.rse.2011.04.007

    Article  Google Scholar 

  37. Ummenhofer C, England M, McIntosh P, Meyers G, Pook M, Risbey J, Gupta A, Taschetto A (2009) What causes southeast Australiaś worst droughts? Geophys Res Lett 36:L04706. https://doi.org/10.1029/2008GL036801

    Article  Google Scholar 

  38. Istomina MN, Kocharyan AG, Lebedeva IP (2005) Floods: genesis, socioeconomic and environmental impacts. J Water Resources 32(4):349–358

    Article  Google Scholar 

  39. Forootan E, Awange J, Kusche J, Heck B, Eicker A (2012) Independent patterns of water mass anomalies over Australia from satellite data and models. Remote Sens Env 124:427–443. https://doi.org/10.1016/j.rse.2012.05.023

    Article  Google Scholar 

  40. Awange JL, Mpelasoka F, Goncalves R (2016) When every drop counts: Analysis of Droughts in Brazil for the 1901–2013 period. Sci Total Env 566–567:1472–88. https://doi.org/10.1016/j.scitotenv.2016.06.031

    Article  Google Scholar 

  41. DMCN (Drought Monitoring Centre Nairobi), (2002) Factoring of weather and climate information and products into disaster management policy. A contribution to strategies for disaster reduction in Kenya, UNDP, Government of Kenya and WMO, Nairobi

    Google Scholar 

  42. Adger WN, Huq S, Brown K, Conway D, Hulme M (2003) Adaptation to climate change in the developing world. Prog Dev Stud 3:179–195. https://doi.org/10.1191/1464993403ps060oa

    Article  Google Scholar 

  43. Phoon SY, Shamseldin AY, Vairavamoorthy K (2004) Assessing impacts of climate change on Lake Victoria Basin, Africa: people-centred approaches to water and environmental sanitation. In: 30th Water Engineering and Development Centre (WEDC) International Confirence Vientiane, Lao PDR, pp 392-397

    Google Scholar 

  44. Awange JL, Ogallo L, Kwang-Ho B, Were P, Omondi P, Omute P, Omulo M (2008) Falling Lake Victoria Water Levels: Is Climate a Contribution Factor? J Clim Change 89:287–297. https://doi.org/10.1007/s10584-008-9409-x

    Article  Google Scholar 

  45. Khandu, (2008) GPS remote sensing of the australian tropopause. Curtin University of Technology, Honours dissatetion

    Google Scholar 

  46. Privette JL, Fowler C, Wick GA, Baldwin D, Emery WJ (1995) Effects of orbirtal drift on advanced very high resolution radiometer products: normalized difference vegetation index and sea surface temperature. Remote Sens Environ 53(3):164–171. https://doi.org/10.1016/0034-4257(95)00083-D

    Article  Google Scholar 

  47. Hatfield JL, Prueger JH, Kustas WP (2004) Remote sensing of dryland crops. In: Ustin S (ed) Remote sensing for natural resources and environmental monitoring: Manual of remote sensing, vol 4, 3rd edn. Wiley, New Jersey, pp 531–568

    Google Scholar 

  48. Nicholson SE, Davenport ML, Malo AR (1990) A comparison of the vegetation response to rainfall in the Sahel and East Africa, using normalized difference vegetation index from NOAA AVHRR. Climatic Change 17(2–3):209–241. https://doi.org/10.1007/BF00138369

    Article  Google Scholar 

  49. Omute P, Corner R, Awange JL (submitted) NDVI monitoring of Lake Victoria water level and drought. Water Resource Management

    Google Scholar 

  50. Chen JL, Wilson CR, Tapley BD, Yang ZL, Niu GY (2009) 2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models. J Geophys Res 114:B05404. https://doi.org/10.1029/2008JB006056

    Article  Google Scholar 

  51. Uriel K (1998) Landscape Ecology and Epidemiology of Vector-Borne Diseases: Tools for Spatial Analysis. J Med Entomol 35(4):435–445

    Article  Google Scholar 

  52. Bonner MR, Han D, Nie J, Rogerson P, Vena JE, Freudenheim Jo L (2003) Positional accuracy of geocoded addresses in epidemiologic research. Epidemiology 14:408–412. https://doi.org/10.1097/01.EDE.0000073121.63254.c5

    Article  Google Scholar 

  53. Hay SI, Lennon JJ (1999) Deriving meteorological variables across Africa for the study and control of vector-borne disease: a comparison of remote sensing and spatial interpolation of climate. Trop Med Int Health 4:58–71

    Article  Google Scholar 

  54. Herbreteau V, Salem G, Souris M (2007) Thirty years of use and improvement of remote sensing applied to epidemiology: from early promises to lasting frustration. Health & Place 13:400–403

    Article  Google Scholar 

  55. Lian M, Warner RD, Alexander JL, Dixon KR (2007) Using geographic information systems and spatial and space-time scan statistics for a populationbased risk analysis of the 2002 equine West Nile epidemic in six contiguous regions of Texas. Int J Health Geographics 6, 42; available at www.ij-healthgeographics.com/content/6/1/42

  56. Snow (2010) GIS Analyses of Dr. Snow’s Map. http://www.udel.edu/johnmack/frec480/cholera/cholera2.html (Accessed on 02/04/2010)

  57. Kamik V, Algermissen ST (1978) Seismic Zoning- Chapter in the Assessment and Mitigation of Earthquake Risk. UNESCO, Paris, pp 1–47

    Google Scholar 

  58. Dalton R (2007) GPS could offer better fault line mapping. Nature News. https://doi.org/10.1038/news070521-9. http://www.nature.com/news/2007/070521/full/news070521-9.html (Accessed on 25/09/2011)

  59. Hofman-Wellenhof B, Lichtenegger H, Collins J (2001) Global Positioning System: theory and practice, 5th edn. Springer, Wien

    Book  Google Scholar 

  60. Hofman-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS Global Navigation Satellite System: GPS. GLONASS; Galileo and more, Springer, Wien

    Google Scholar 

  61. Jia M (2005) Crustal deformation from the Sumatra-Andaman Earthquake. Geoscience Australia’s analysis of the largest earthquake since the beginning of modern space geodesy. Ausgeo news issue:80

    Google Scholar 

  62. Larson KM (2009) GPS seismology. J Geodesy 83:227–233. https://doi.org/10.1007/s00190-008-0233-x

    Article  Google Scholar 

  63. Seidel DJ, Randel WJ (2006) Variability and trends in the global tropopause estimated from radiosonde data. J Geophys Res 111, https://doi.org/10.1029/2006JD007363

  64. Cruz A, Laneve G, Cerra D, Mielewczyk M, Garcia MJ, Santilli G, Cadau E, Joyanes G (2007) On the application of nighttime sensors for rapid detection of areas impacted by disasters. In Geomatics solutions for disaster management. In: Li J, Zlatanova S, Fabbri, A (eds) Lecture Notes in Geoinformation and Cartography. Springer Verlag, pp 16-36

    Google Scholar 

  65. Hammond WC, Brooks BA, Bürgmann R, Heaton T, Jackson M, Lowry AR, and Anandakrishnan S (2010) The scientific value of high-rate, low-latency GPS data, a white paper. http://www.unavco.org/community_science/science_highlights/2010/realtimeGPSWhitePaper2010.pdf. Accessed 6 June 2011

  66. Al-Khudhairy DHA, Caravaggi I, Glada S (2005) Structural damage assessments from IKONOS data using change detection, object-oriented segmentation, and classification techniques. Photogram Eng Remote Sens 71:825837

    Article  Google Scholar 

  67. Kouchi K, Yamazaki F, Kohiyama M, Matsuaka M, Muraoka N (2004) Damage detection from Quickbird high-resolution Satellite images for the 2003 Boumerdes, Algeria Earthquake. Proceeding., pp 215–226

    Google Scholar 

  68. Yamazaki F, Kouchi K, Kohiyama M, Muraoka N, Matsuoka M (2004) Earthquake damage detection using high-resolution satellite images. Proceedings of IEEE 200 International Geoscience and Remote Sensing Symposium, IEEE CD-ROM:4p

    Google Scholar 

  69. Yamazaki F, Yano Y, Matsuoka M (2005) Visual damage interpretation of buildings in Bam City using QuickBird images. Earthq Spectra 21(1):329–336

    Article  Google Scholar 

  70. Ogawa N, Yamazaki F (2000) Photo-interpretation of buildings damage due to earthquakes using aerial photographs., p 8p

    Google Scholar 

  71. Turker M, Cetinkaya B (2005) Automatic detection of earthquake-damaged buildings using DEMs created from pre- and post-earthquake stereo aerial photographs. Int J Remote Sens 26(4):823–832

    Article  Google Scholar 

  72. Hasegawa H, Yamazaki F, Matsuoka M, Seikimoto I (2000) Determination of building damage due to earthquakes using aerial television images., p 8p

    Google Scholar 

  73. Bitelli G, Camassi R, Gusella L, Mognol A (2004) Image change detection on urban areas: the earthquake case. Proceedings of the ISPRS XXth Congress, Istanbul 35(B7):692–697

    Google Scholar 

  74. Mehdi R, Gruen A (2007) Automatic Classification of Collapsed Buildings Using Object and Image Space Features. In Geomatics solutions for disaster management. In: Li J, Zlatanova S, Fabbri A (eds) Lecture Notes in Geoinformation and Cartography. Springer Verlag, pp 135–148

    Google Scholar 

  75. Miura H, Midorikawa S (2006) Updating GIS building inventory data using high-resolution satellite images for earthquake damage assessment: Application to metro Manila. Philippines, Earthquake Spectra 22:151–168

    Article  Google Scholar 

  76. Yamaguchi N, Yamazaki F (2001) Estimation of strong motion distribution in the 1995 Kobe earthquake based on building damage data. Earthq Eng Struct Dyn 30(6):787–801

    Article  Google Scholar 

  77. Matsuzaka S (2006) GPS network experience in japan and its usefulness. Seventeenth United Nations Regional Cartographic Conference. Geographical Survey Institute, Bangkok Thailand

    Google Scholar 

  78. Sagiya T (2005) In: Space Planets, ( 56), (eds), p xxix-xli

    Google Scholar 

  79. Church JA, Gregory JM, Huybrechts P, Kuhn M, Lambeck K, Nhuan MT, Qin D, Woodworth PL (2001) Changes in Sea Level. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis: contribution of working group I to the third assessment report of the intergovernmental panel on climate change, Cambridge University Press. Cambridge, New York, pp 639–694

    Google Scholar 

  80. Pugh D (2004) Changing sea levels. Effect of tides, weather and climate. Univeristy Press, Cambridge

    Google Scholar 

  81. Lowe ST, LaBrecque JL, Zuffada C, Romans LJ, Young L, Hajj GA (2002) First spaceborne observation of an earth-reflected GPS signal

    Google Scholar 

  82. Geoscience Australia (2008) Need for the geodetic component for absolute sea level monitoring. http://www.ga.gov.au/geodesy/slm/spslcmp/ (Accessed on 11/12/2008)

  83. Warrick RA, Le Provost C, Meier MF, Oerlemans J, Woodworth PL (1996) Changes in Sea Level. In: Climate Change 1995, The Science of Climate Change, Houghton JT, Meira Filho LG, Callander BA, Harris N, Klattenberg A, Maskell K (eds) Cambridge University Press, pp 359–405

    Google Scholar 

  84. Antonov JI, Levitus S, Boyer TP (2002) Steric sea level variations during 1957–1994: Importance of salinity. J Geophys Res (Oceans) 107(C12):8013. https://doi.org/10.1029/2001JC000964

    Article  Google Scholar 

  85. Mitrovica JX, Tamisiea ME, Davis JL, Milne GA (2001) Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409:1026–1029. https://doi.org/10.1038/35059054

    Article  Google Scholar 

  86. Bamber JL, Riva REM, Vermeersen BLA, LeBrocq AM (2009) Reassessment of the potential sea-level rise from a collapse of the West Antarctic ice sheet. Science 324:901–903. https://doi.org/10.1126/science.1169335

    Article  Google Scholar 

  87. Dickey JO, Bentley CR, Bilham R, Carton JA, Eanes RJ, Herring TA, Kaula WM, Lagerloef GSE, Rojstaczer S, Smith WHF, Van Den Dool HM, Wahr JM, Zuber MT (1996) Satellite gravity and the geosphere. national research council report. National Academies Press. Washington, DC, 112 p

    Google Scholar 

  88. Titus JG, Park RA, Leatherman S, Weggel R, Greene MS, Treehan M, Brown S, Gaunt C, Yohe G (1991) Greenhouse effect and sea level rise: The cost of holding back the sea. Coast Manag 19:171–204

    Article  Google Scholar 

  89. Hirt C, Gruber T, Featherstone WE (2011) Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008, quasigeoid heights. J Geod 85:723–740. https://doi.org/10.1007/s00190-011-0482-y

  90. Rius A, Aparicio JM, Cardellach E, Martín-Neira M, Chapron B (2002) Sea surface state measured using GPS reflected signals. Geophys Res Lett 29(23):21–22. https://doi.org/10.1029/2002GL015524

    Article  Google Scholar 

  91. Rocken C, Kelecy TM, Born GH, Young LE, Purcell GH, Wolf SK (1990) Measuring precise sea level from a buoy using the Global Positioning System. Geophys Res Lett 17(12):2145–2148

    Article  Google Scholar 

  92. Kelecy TM, Born GH, Parke ME, Rocken C (1994) Precise mean sea level measuring using global positioning system. J Geophys Res 99(c4):7951–7959

    Article  Google Scholar 

  93. Born GH, Parke ME, Axelrad P, Gold KL, Johnson J, Key KW, Kubitschek DG, Christensen EJ (1994) Calibration of the TOPEX altimeter using a GPS buoy. J Geophys Res 99(C12):24517–24526

    Article  Google Scholar 

  94. Leuliette EW, Nerem RS, Mitchum GT (2004) Calibration of TOPEX/Poseidon and Jason Altimeter Data to Construct a Continuous Record of Mean Sea Level Change. Mar Geodesy 27(1):79–94. https://doi.org/10.1080/01490410490465193

    Article  Google Scholar 

  95. Watson C, Coleman R, White N, Church J, Govind R (2003) Absolute Calibration of TOPEX/Poseidon and Jason-1 Using GPS Buoys in Bass Strait. Australia. Marine Geodesy 26(3–4):285–304. https://doi.org/10.1080/01490410390256745

    Article  Google Scholar 

  96. Snay R, Soler T (2008) Continuously operating reference station (CORS): history, applications, and future enhancements. J Surveying Eng 134(4):95–104. https://doi.org/10.1061/(ASCE)0733-9453(2008)134:4(95)

  97. Snay R, Cline M, Dillinger W, Foote R, Hilla S, Kass W, Ray J, Rohde J, Sella G, Soler T (2007) Using global positioning system-derived crustal velocities to estimate rates of absolute sea level change from North American tide gauge records. J Geophys Res 112:B04409. https://doi.org/10.1029/2006JB004606

    Article  Google Scholar 

  98. Crétaux J-F, Jelinski W, Calmant S, Kouraev A, Vuglinski V, Bergé-Nguyen M, Gennero M-C, Nino F, Abarca Del Rio R, Cazenave A, Maisongrande P (2011) SOLS: a lake database to monitor in the Near real-time water level and storage variations from remote sensing data. Adv Space Res 47:1497–1507. https://doi.org/10.1016/j.asr.2011.01.004

    Article  Google Scholar 

  99. GITEWS (German Indonesian Tsunami Early Warning System) (2008) A New Approach in Tsunami-Early Warning. Press-Information embargo: 11.11.2008, 10:00 CET. http://www.gitews.de/fileadmin/documents/content/press/GITEWS_operationell_eng_nov-2008.pdf (Accessed on 10/12/2008)

  100. Helm A, Montenbruck O, Ashjaee J, Yudanov S, Beyerle G, Stosius R, Rothacher M (2007) GORS - A GNSS Occultation, Reflectometry and Scatterometry Space Receiver. In: Proceedings of the 20th International Technical Meeting of the Satellite Division of The Institute of Navigation ION GNSS 2007, Fort Worth, Texas, Sept. 25–28, pp. 2011-2021

    Google Scholar 

  101. Cruden D, Varnes D (1996) Landslide types and processes. In: Turner K, Schuster R (eds) Landslides investigation and mitigation, transportation research board special Report 247. National Academy Press, Washington D.C., pp 36–75

    Google Scholar 

  102. Malamud B, Turcotte D, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surface Processes Land 29:687–711

    Article  Google Scholar 

  103. Wills C, McCrink T (2002) Comparing Landslide Inventories: The Map Depends on the Method. Env Eng Geosci VIII 4:279–293

    Article  Google Scholar 

  104. Motagh M, Djamour Y, Walter TR, Wetze H, Zschau J, Arabi S (2007) Land subsidence in Mashhad Valley, northeast Iran: results from InSAR, levelling and GPS. Geophysical Journal International 168:518–526. https://doi.org/10.1111/j.1365-246X.2006.03246.x

    Article  Google Scholar 

  105. Schenk A (2006) Interpreting surface displacement in Tehran / Iran region observed by Differential Synthetic Aperture Radar Interferometry (DINSAR). Diplomarbeit, Technische Universität Berlin, Institut für Angewandte Geowissenschaften Fachgebiet Angewandte Geophysik

    Google Scholar 

  106. Poland JF (1984) Guidebook to studies of land subsidence due to water withdrawal. UNESCO, Technical report

    Google Scholar 

  107. McKean J, Buechel S, Gaydos L (1991) Remote sensing and landslide hazard assessment. Photogram Eng Remote Sens 57(9):1185–1193

    Google Scholar 

  108. Rood K (1984) An aerial photograph inventory of the frequency and yield of mass wasting on the Queen Charlotte Islands. BC Ministry of Forests, Land Management Report, British Columbia, p 34

    Google Scholar 

  109. Sauchyn D, Trench N (1978) Landsat applied to landslide mapping. Photogrammetric Engineering and Remote Sensing 44:735–741

    Google Scholar 

  110. Barlow J, Franklin SE (2007) Mapping Hazardous Slope Processes Using Digital Data. In Geomatics solutions for disaster management. In: Li J, Zlatanova S, Fabbri A (eds) Lecture Notes in Geoinformation and Cartography. Springer Verlag, 74–90

    Google Scholar 

  111. Barlow J, Franklin S, Martin Y (2006) High spatial resolution satellite imagery, DEM derivatives, and image segmentation for the detection of mass wasting processes. Photogram Eng Remote Sens 72(6):687–692

    Article  Google Scholar 

  112. Zhang Q, Zhao C, Ding X, Peng J (2007) Monitoring Xian Land Subsidence Evolution by Differential SAR Interferometry. In Geomatics solutions for disaster management. In: Li J, Zlatanova S, Fabbri A (eds) Lecture Notes in Geoinformation and Cartography. Springer Verlag, pp 91–102

    Google Scholar 

  113. Malet JP, Maquaire O, Calais E (2002) The use of Global Positioning System techniques for the continuous monitoring of landslides: application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France). Geomorphology 43(1–2):33–54. https://doi.org/10.1016/S0169-555X(01)00098-8

    Article  Google Scholar 

  114. Gili JA, Corominas J, Rius J (2000) Using Global Positioning Techniques in Landslide Monitoring. Eng Geol 155(3):167–192

    Article  Google Scholar 

  115. Xue Z, Li G, Li Z, Wu X, Wei J (2007) Monitoring Xian Land Subsidence Evolution by Differential SAR Interferometry. In Geomatics solutions for disaster management. In: Li, J, Zlatanova, S, Fabbri, A (eds) Lecture Notes in Geoinformation and Cartography. Springer Verlag, pp 427-437

    Google Scholar 

  116. Bancroft S (1985) An algebraic solution of the GPS equations. IEEE Trans Aerosp Electron Syst AES-21:56-59

    Google Scholar 

  117. Mitrovica JX, Gomez N, Clark PU (2009) The Sea-Level Fingerprint of West Antarctic collapse. Science 323(5915):753. https://doi.org/10.1126/science.1166510

    Article  Google Scholar 

  118. Rizos C (2001) Alternatives to current GPS-RTK services and some implications for CORS infrastructure and operations. GPS Solution 11(3):151–158

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Awange .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Awange, J., Kiema, J. (2019). Disaster Monitoring and Management. In: Environmental Geoinformatics. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-030-03017-9_31

Download citation

Publish with us

Policies and ethics