Skip to main content

Light Detection And Ranging (LiDAR)

  • Chapter
  • First Online:
Environmental Geoinformatics

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

  • 1347 Accesses

Abstract

Light Detection And Ranging (LiDAR) is an active laser measuring technology that combines laser scanning and Position and Orientation System (POS) in imaging for generation of accurate and dense 3D point clouds, Digital Elevation Models (DEMs) and Digital Surface Models (DSMs). Other value addition products such as contours, slope maps, tree and building height models and cut-and-fill models can also be produced from the primary LiDAR point cloud data.

In order to arrive at knowledge of the motions of birds in the air, it is first necessary to acquire knowledge of the winds, which we will prove by the motions of water in itself, and this knowledge will be a step enabling us to arrive at the knowledge of beings that fly between the air and the wind.

— Leonardo da Vinci (1452–1519)

With Contribution by Ian Asige Mweresa, Regional Centre for Mapping of Resources for Development (RCMRD), Nairobi, Kenya.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackermann F (1999) Airborne laser scanning - present status and future expectations. ISPRS J Photogramm Remote Sens 54:64–67

    Article  Google Scholar 

  2. Rizaldy A, Firdaus W (2012) Direct georeferencing: a new standard in photogrammetry for high accuracy mapping. ISPRS-Int Arch Photogramm, Remote Sens Spat Inf Sci 39:59

    Google Scholar 

  3. Weng Q (2010) Remote sensing and GIS integration: theories, methods, and applications. McGraw-Hill, New York, 416p

    Google Scholar 

  4. Webster TL, Forbes DL, Dickie S, Shreenan R (2004) Using topographic LiDAR to map flood risk from storm-surge events for Charlottetown, Prince Edward Island, Canada. Can J Remote Sens 30(1):64–76

    Article  Google Scholar 

  5. Felix R (2015) An introduction to LiDAR. Retrieved January 18, 2018, from http://felix.rohrba.ch/en/2015/an-introduction-to-lidar/

  6. Alharthy A, Bethel J (2002) Heuristic filtering and 3D feature extraction from LiDAR data. In: International archives of photogrammetry and remote sensing (IAPRS), Graz, Austria, Vol. XXXIV, Part 3A, pp 29–34

    Google Scholar 

  7. Kraus K (2007) Photogrammetry: geometry from images and laser scans (trans: Harley I and Kyle S) (2nd edn, Vol 1). Deutsche Nationalbibliothek

    Google Scholar 

  8. Fieber KD, Davenport IJ, Ferryman JM, Gurney RJ, Walker JP, Hacker JM (2013) Analysis of full-waveform LiDAR data for classification of an orange orchard scene. ISPRS J Photogramm Remote Sens 82:63–82

    Article  Google Scholar 

  9. Mikhail EM, Bethel JS, McGlone JC (2015) Introduction to modern photogrammetry. Wiley, New York

    Google Scholar 

  10. Hudak AT, Evans JS, Smith AMS (2009) LiDAR utility for natural resource managers. Remote Sens 1:934–951. https://doi.org/10.3390/rs1040934

    Article  Google Scholar 

  11. Haneberg WC, Cole WF, Kasali G (2009) Bull Eng Geol Environ 68:263. https://doi.org/10.1007/s10064-009-0204-3

    Article  Google Scholar 

  12. Jaboyedoff M, Oppikofer T, Abelln A (2012) Use of LiDAR in landslide investigations: a review. Nat Hazards 61:5. https://doi.org/10.1007/s11069-010-9634-2

    Article  Google Scholar 

  13. Jaffe JS, Moore KD, McLean J, Strand MP (2001) Underwater optical imaging: status and prospects. Oceanography 14(3):66

    Article  Google Scholar 

  14. McLeod D, Jacobson J, Hardy M (2013) Autonomous inspection using an underwater 3D LiDAR .https://doi.org/10.23919/OCEANS.2013.6741175

  15. Agius C, Brearley J (2014) Can building footprint extraction from LiDAR be used productively in a topographic mapping context? https://www.um.edu.mt/library/oar//handle/123456789/9026

  16. Dubayah RO, Drake JB (2000) LiDAR remote sensing for forestry. J For 98(6):44–46. https://doi.org/10.1093/jof/98.6.44

    Article  Google Scholar 

  17. Lefsky MA, Cohen WB, Parker GG, Harding DJ (2002) LiDAR remote sensing for ecosystem studies: LiDAR, an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest, landscape, and global ecologists. BioScience 52(1):19–30 (2002). https://doi.org/10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2

  18. Richardson JJ, Moskal M (2011) Strengths and limitations of assessing forest density and spatial configuration with aerial LiDAR. Remote Sens Environ 115(10):2640–2651. https://doi.org/10.1016/j.rse.2011.05.020

    Article  Google Scholar 

  19. Tansey K, Selmes N, Anstee A, Tate NT, Denniss A (2009) Estimating tree and stand variables in a Corsican Pine woodland from terrestrial laser scanner data. Int J Remote Sens 30(2009):5195–5209

    Article  Google Scholar 

  20. Garca M, Riao D, Chuvieco E, Danson FM (2010) Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sens Environ 114(4):816–830

    Article  Google Scholar 

  21. Morsy S, Shaker A, El-Rabbany A (2017) Multispectral LiDAR data for land cover classification of urban areas. Sensors (Basel, Switzerland) 17(5). https://doi.org/10.3390/s17050958

  22. Cicimol A (2010) Classification of full-waveform airborne laser scanning data and extraction of attributes of vegetation for topographic mapping. PhD Thesis University of Leicester

    Google Scholar 

  23. Ussyshkin V, Theriault L (2011) Airborne LiDAR: advances in discrete return technology for 3D vegetation mapping. Remote Sens 3(3):416–434. https://doi.org/10.3390/rs3030416

    Article  Google Scholar 

  24. Brunn A, Weidner U (1997) Extracting buildings from digital surface models. Int Arch Photogramm Remote Sens 32:27–34

    Google Scholar 

  25. Clode S, Rottensteinerb F, Kootsookosc P, Zelniker E (2007) Detection and vectorization of roads from LiDAR data. Photogramm Eng Remote Sens 73:517–535

    Article  Google Scholar 

  26. Forlani G, Nardinocchi C, Scaioni M, Zingaretti P (2006) Complete classification of raw LiDAR data and 3D reconstruction of buildings. Pattern Anal Appl 8:357–374

    Article  Google Scholar 

  27. Haala N, Brenner C (1999) Extraction of buildings and trees in urban environments. ISPRS J Photogramm Remote Sens 54:130–137

    Article  Google Scholar 

  28. Miliaresis G, Kokkas N (2007) Segmentation and object-based classification for the extraction of the building class from LiDAR DEMs. Comput Geosci 33:1076–1087

    Article  Google Scholar 

  29. Kokkas N, (2005) City modeling and building reconstruction with Socet Set vol 5.2 BAE Systems. Customer presentation at the 2005 GXP Regional User Conference. Cambridge, England, pp 19–21

    Google Scholar 

  30. Lee DH, Lee KM, Lee SU (2008) Fusion of LiDAR and imagery for reliable building extraction. Photogramm Eng Remote Sens 74:215–225

    Article  Google Scholar 

  31. Secord J, Zakhor A (2007) Tree detection in urban regions using aerial LiDAR and image data. IEEE Geosci Remote Sens Lett 4:196–200

    Article  Google Scholar 

  32. Sohn G, Dowman I (2005) Data fusion of high-resolution satellite imagery and LiDAR data for automatic building extraction. ISPRS J Photogramm Remote Sens 62(1):43–63

    Article  Google Scholar 

  33. Voss M, Sugumaran R (2008) Seasonal effect on tree species classification in an urban environment using hyperspectral data, LiDAR, and an object-oriented approach. Sensors 8:3020–3036

    Article  Google Scholar 

  34. Kinzel PJ, Legleiter CJ and Nelson, JM (2012) Mapping river bathymetry with a small footprint green LiDAR: applications and challenges. J Am Water Resour Assoc (JAWRA) 1–22. https://doi.org/10.1111/jawr.12008

  35. Monfort CL, Lippmann TC (2011) Assimilation of airborne imagery with a wave model for bathymetric estimation. J Coast Res 62:40–49. https://doi.org/10.2112/SI_62_5

    Article  Google Scholar 

  36. Bowen ZH, Waltermire RG (2002) Evaluation of light detection and ranging (LiDAR) for measuring river corridor topography. J Am Water Resour Assoc. https://doi.org/10.1111/j.1752-1688.2002.tb01532.x

  37. Uddin W (2002) Evaluation of airborne LiDAR digital terrain mapping for highway corridor planning and design. Proc. Pecora. www.isprs.org

  38. Veneziano D, Souleyrette R, Hallmark S (2014) Transportation research record. https://doi.org/10.3141/1836-01. ISSN: 0361-1981

  39. White RA, Dietterick BC, Mastin T, Strohman R (2010) Forest roads mapped using LiDAR in steep forested terrain. Remote Sens 2(4):1120–1141. https://doi.org/10.3390/rs2041120

    Article  Google Scholar 

  40. Briggman KA (2010) Differential absorption LiDAR for the detection and quantification of greenhouse gases. Retrieved January 11, 2018, from https://www.nist.gov/programs-projects/differential-absorption-lidar-detection-and-quantification-greenhouse-gases

  41. Grebby S, Naden J, Cunningham D, Tansey K (2011) Integrating airborne multispectral imagery and airborne LiDAR data for enhanced lithological mapping in vegetated terrain. Remote Sens Environ 115(1):214–226

    Article  Google Scholar 

  42. Williams K, Olsen M, Roe G, Glennie C (2013) Synthesis of transportation applications of mobile LiDAR. Remote Sens 5(9):4652–4692. https://doi.org/10.3390/rs5094652

    Article  Google Scholar 

  43. Wang Y, Liang X, Flener C, Kukko A, Kaartinen H, Kurkela M, Vaaja M, Hyyppa H, Alho P (2013) 3D modeling of coarse fluvial sediments based on mobile laser scanning data. Remote Sens 5(9):4571–4592. https://doi.org/10.3390/rs5094571

    Article  Google Scholar 

  44. Renslow M, Greenfield P, Guay T (2000) Evaluation of multi-return LiDAR for forestry applications. Project Report for the Inventory and Monitoring Steering Committee, RSAC-2060/4810-LSP-0001-RPT1

    Google Scholar 

  45. Yang B, Chen C (2015) Automatic registration of UAV-borne sequent images and LiDAR data. ISPRS J Photogramm Remote Sens 101:262–274. https://doi.org/10.1016/j.isprsjprs.2014.12.025

    Article  Google Scholar 

  46. Wichmann V, Bremer M, Lindenberger J, Rutzinger M, Georges C, Petrini-Monteferri, F (2015) Evaluating the potential of multispectral airborne LiDAR for topographic mapping and land cover classification. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol II-3/W5

    Google Scholar 

  47. Spinhirne JD (1993) Micro pulse LiDAR. IEEE Trans Geosci Remote Sens 31(1):48

    Article  Google Scholar 

  48. Konecny G (2003) Geoinformation: remote sensing, photogrammetry, geographic informa

    Google Scholar 

  49. Renslow M (2005) The status of LiDAR today and future directions . Proceedings of ISPRS WG 1/2 ISPRS WG 1/2, Banff Workshop

    Google Scholar 

  50. Aplin P, Atkinson PM, Curran PJ (1997) Fine spatial resolution satellite sensors for the next decade. Int J Remote Sens 18:3873–3881

    Article  Google Scholar 

  51. Bähr H-P, Vögtle T (eds) (1998) Erderkundungssatelliten und ihre Produkte. Digitale Bildverarbeitung, vol 3. Wichmann Verlag, Heidelberg, pp 29–43

    Google Scholar 

  52. Baltsavias E (1999) A comparison between photogrammetry and laser scanning. ISPRS J Photogramm Remote Sens 54:83–94

    Article  Google Scholar 

  53. Campbell JB (2007) Introduction to remote sensing, 4th edn. Guilford Press, New York

    Google Scholar 

  54. Congalton R, Green K (2009) Assessing the accuracy of remotely sensed data: principles and practices. Taylor & Francis Group, London

    Google Scholar 

  55. Devillers R, Jeansoulin R (eds) (2006) Fundamentals of spatial data quality. ISTE Ltd, Washington, D.C

    Google Scholar 

  56. Forshaw MRB, Haskell A, Miller PF, Stanley DJ, Townshend JRG (1983) Spatial resolution of remotely sensed imagery: a review paper. Int J Remote Sens 4(3):497–520

    Article  Google Scholar 

  57. Fritz LW (1996) The Era of commercial earth observation satellites. Photogramm Eng Remote Sens 1:39–45

    Google Scholar 

  58. Groot R, McLaughlin J (eds) (2000) Geospatial data infrastructure: concepts, cases and good practice. Oxford University Press, Oxford

    Google Scholar 

  59. Guelman M, Ortenberg F (2009) Small satellite’s role in future hyperspectral earth observation missions. Acta Astronautica 64:1252–1263

    Article  Google Scholar 

  60. Ho C, Robinson A, Millerm D, Davis M (2005) Overview of sensors and needs for environmental monitoring. Sensors 5:4–37

    Article  Google Scholar 

  61. Jensen JR (2005) Introductory digital image processing: a remote sensing perspective, 3rd edn. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  62. Joseph G (2000) How well do we understand earth observation electro-optical sensor parameters? ISPRS J Photogramm Remote Sens 55:9–12

    Article  Google Scholar 

  63. Kiema JBK (2001) Multi-source data fusion and image compression in urban remote sensing. Doctor of Engineering. Dissertation. University of Karlsruhe (ISBN3-8265-9312-X) Shaker Verlag, 130p

    Google Scholar 

  64. Kramer HJ, Cracknell A (2008) An overview of small satellites. Int J Remote Sens 29:4285–4337

    Article  Google Scholar 

  65. Kumi-Boateng B (2012) A spatio-temporal based estimation of vegetation changes in the Tarkwa mining area of Ghana. Doctor of Philosophy. Dissertation. University of Mines and Technology, Ghana, 165p

    Google Scholar 

  66. Kussul N, Shelestov A, Skakun S (2009) Grid and sensor web technologies for environmental monitoring. Earth Sci Inform 2(1–2):37–51

    Article  Google Scholar 

  67. Liu X (2008) Airborne LiDAR for DEM generation: some critical issues. Prog Phys Geogr 32(1):31–49. https://doi.org/10.1177/0309133308089496

    Article  Google Scholar 

  68. Ma R (2005) DEM generation and building detection from LiDAR data. Photogramm Eng & Remote Sens 71(7):847–854

    Article  Google Scholar 

  69. McCoy R (2005) Field methods in remote sensing. The Guilford Press, New York, 158p

    Google Scholar 

  70. Murai S (2004) Remote sensing and GIS courses - distance education. Japan International Cooperation Agency (JICA)-Net

    Google Scholar 

  71. Phinn SR (1998) A framework for selecting appropriate remote sensed data dimensions for environmental monitoring and management. Int J Remote Sens 19:3457–3463

    Article  Google Scholar 

  72. Popescue SC, Wynne RH, Nelson RF (2003) Measuring individual tree crown diameter with LiDAR and assessing its influence on estimating forest volume and biomass. Can J Remote Sens 29:564–577

    Article  Google Scholar 

  73. Porter J, Arzberger P, Braun H, Brynat P, Gage S, Hansen T, Lin C, Lin F, Kratz T, Michener W, Shapiro S, Williams T (2005) Wireless sensor networks for ecology. BioScience 55:561–572

    Article  Google Scholar 

  74. Quattrochi DA, Goodchild MF (1997) Scale in remote sensing and GIS. Lewis Publishers, New York

    Google Scholar 

  75. Ramapriyan HK (2002) Satellite imagery in earth science applications. In: Castelli V, Bergman LD (eds) Image databases: search and retrieval of digital imagery. Wiley, New York

    Google Scholar 

  76. Schenk T, Csatho B (2002) Fusion of LiDAR data and aerial imagery for a more complete surface description. Archives of photogrammetry

    Google Scholar 

  77. Schiewe J (1998) Experiences from the MOMS-02-project for future developments. Int Arch Photogramm Remote Sens 32:533–539

    Google Scholar 

  78. Ussyshkin RV, Smith RB (2007) A new approach for assessing LiDAR data accuracy for corridor mapping applications. In: Proceedings of the 5th international symposium on mobile mapping technology, Padua, Italy

    Google Scholar 

  79. Xue Y, Li Y, Guang J, Zhang X, Guo J (2008) Small satellite remote sensing applications - history, current and future. Int J Remote Sens 29:4339–4372

    Article  Google Scholar 

  80. Zhang Y, Xie P, Li H (2007) An online colour 2D and 3D image system for disaster management. In: Li J, Zlatanova S, Fabbri A (eds) Geomatics solutions for disaster management. Lecture notes in geoinformation and cartography. Springer, Berlin, pp 1–15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Awange .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Awange, J., Kiema, J. (2019). Light Detection And Ranging (LiDAR). In: Environmental Geoinformatics. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-030-03017-9_21

Download citation

Publish with us

Policies and ethics