Skip to main content
  • 344 Accesses

Abstract

The digital microfluidic biochip has become a promising platform for various biomedical and biochemistry applications because of its specific advantages. However, conventional digital microfluidic biochips are still with several drawbacks. In order to overcome those drawbacks, a new digital microfluidic-based architecture, referred as micro-electrode-dot-array (MEDA), has been proposed and experimentally validated. This chapter introduces basic working principles and applications of digital microfluidics, details of MEDA technology, and motivation for developing design automation and test techniques for MEDA biochips.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schulte, T. H., Bardell, R. L., & Weigl, B. H. (2002). Microfluidic technologies in clinical diagnostics. Clinica Chimica Acta, 321(1), 1–10.

    Article  Google Scholar 

  2. Guiseppi-Elie, A., Brahim, S., Slaughter, G., & Ward, K. R. (2005). Design of a subcutaneous implantable biochip for monitoring of glucose and lactate. IEEE Sensors Journal, 5(3), 345–355.

    Article  Google Scholar 

  3. Fair, R. B. (2007). Digital microfluidics: Is a true lab-on-a-chip possible? Microfluidics and Nanofluidics, 3(3), 245–281.

    Article  Google Scholar 

  4. Samiei, E., Tabrizian, M., & Hoorfar, M. (2016). A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab on a Chip, 16(13), 2376–2396.

    Article  Google Scholar 

  5. Millington, D., Norton, S., Singh, R., Sista, R., Srinivasan, V., & Pamula, V. (2018). Digital microfluidics comes of age: High-throughput screening to bedside diagnostic testing for genetic disorders in newborns. Expert Review of Molecular Diagnostics, 18, 701–712.

    Article  Google Scholar 

  6. Luo, Y., Chakrabarty, K., & Ho, T.-Y. (2015). Hardware/Software co-design and optimization for cyberphysical integration in digital microfluidic biochips. Cham: Springer.

    Book  Google Scholar 

  7. Zhao, Y., & Chakrabarty, K. (2012). Design and testing of digital microfluidic biochips. New York: Springer Science and Business Media.

    Google Scholar 

  8. Chakrabarty, K. (2010). Design automation and test solutions for digital microfluidic biochips. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(1), 4–17.

    Article  MathSciNet  Google Scholar 

  9. Berthier, J. (2012). Micro-Drops and Digital Microfluidics. Waltham: William Andrew.

    Google Scholar 

  10. Hu, K., Ibrahim, M., Chen, L., Li, Z., Chakrabarty, K., & Fair, R. (2015). Experimental demonstration of error recovery in an integrated cyberphysical digital-microfluidic platform. In IEEE Biomedical Circuits and Systems Conference, pp. 1–4.

    Google Scholar 

  11. Srinivasan, V., Pamula, V. K., & Fair, R. B. (2004). Droplet-based microfluidic lab-on-a-chip for glucose detection. Analytica Chimica Acta, 507(1), 145–150.

    Article  Google Scholar 

  12. Chen, X., Cui, D., Liu, C., Li, H., & Chen, J. (2007). Continuous flow microfluidic device for cell separation, cell lysis and DNA purification. Analytica Chimica Acta, 584(2), 237–243.

    Article  Google Scholar 

  13. Chang, Y.-H., Lee, G.-B., Huang, F.-C., Chen, Y.-Y., Lin, J.-L. (2006). Integrated polymerase chain reaction chips utilizing digital microfluidics. Biomedical Microdevices, 8(3), 215–225.

    Article  Google Scholar 

  14. Luan, L., Evans, R. D., Jokerst, N. M., & Fair, R. B. (2008). Integrated optical sensor in a digital microfluidic platform. IEEE Sensors Journal, 8(5), 628–635.

    Article  Google Scholar 

  15. Hu, K., Hsu, B.-N., Madison, A., Chakrabarty, K., & Fair, R. (2013). Fault detection, real-time error recovery, and experimental demonstration for digital microfluidic biochips. In Proceedings of IEEE/ACM Design, Automation and Test Conference in Europe, pp. 559–564.

    Google Scholar 

  16. Pollack, M., Shenderov, A., & Fair, R. (2002). Electrowetting-based actuation of droplets for integrated microfluidics. Lab on a Chip, 2(2), 96–101.

    Article  Google Scholar 

  17. Choi, K., Ng, A. H., Fobel, R., & Wheeler, A. R. (2012). Digital microfluidics. Annual Review of Analytical Chemistry, 5, 413–440.

    Article  Google Scholar 

  18. Cho, S. K., Moon, H., & Kim, C.-J. (2003). Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. Journal of Microelectromechanical Systems, 12(1), 70–80.

    Article  Google Scholar 

  19. Mugele, F., & Baret, J.-C. (2005). Electrowetting: From basics to applications. Journal of Physics: Condensed Matter, 17(28), R705.

    Google Scholar 

  20. Berthier, J., Clementz, P., Raccurt, O., Jary, D., Claustre, P., Peponnet, C., et al. (2006). Computer aided design of an EWOD microdevice. Sensors and Actuators A: Physical, 127(2), 283–294.

    Article  Google Scholar 

  21. Wulff-Burchfield, E., Schell, W. A., Eckhardt, A. E., Pollack, M. G., Hua, Z., Rouse, J. L., et al. (2010). Microfluidic platform versus conventional real-time polymerase chain reaction for the detection of Mycoplasma pneumoniae in respiratory specimens. Diagnostic Microbiology and Infectious Disease, 67(1), 22–29.

    Article  Google Scholar 

  22. Jebrail, M. J., & Wheeler, A. R. (2008). Digital microfluidic method for protein extraction by precipitation. Analytical Chemistry, 81(1), 330–335.

    Article  Google Scholar 

  23. Sista, R. S., Eckhardt, A. E., Srinivasan, V., Pollack, M. G., Palanki, S., & Pamula, V. K. (2008). Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform. Lab on a Chip, 8(12), 2188–2196.

    Article  Google Scholar 

  24. Wang, G., Teng, D., & Fan, S.-K. (2011). Digital microfluidic operations on micro-electrode dot array architecture. IET Nanobiotechnology, 5(4), 152–160.

    Article  Google Scholar 

  25. Lai, K. Y.-T., Shiu, M.-F., Lu, Y.-W., Ho, Y.-C., Kao, Y.-C., Yang, Y.-T., et al. (2015). A field-programmable lab-on-a-chip with built-in self-test circuit and low-power sensor-fusion solution in 0.35 μm standard CMOS process. In Proceedings of IEEE Asian Solid-State Circuits Conference, pp. 1–4.

    Google Scholar 

  26. Wang, G., Teng, D., Lai, Y.-T., Lu, Y.-W., Ho, Y., & Lee, C.-Y. (2013). Field-programmable lab-on-a-chip based on microelectrode dot array architecture. IET Nanobiotechnology, 8(3), 163–171.

    Article  Google Scholar 

  27. Lai, K. Y.-T., Yang, Y.-T., & Lee, C.-Y. (2015). An intelligent digital microfluidic processor for biomedical detection. Journal of Signal Processing Systems, 78(1), 85–93.

    Article  Google Scholar 

  28. Li, Z., Lai, K. Y.-T., Yu, P.-H., Chakrabarty, K., Ho, T.-Y., & Lee, C.-Y. (2017). Droplet size-aware high-level synthesis for micro-electrode-dot-array digital microfluidic biochips. IEEE Transactions on Biomedical Circuits and Systems, 11(3), 612–626.

    Article  Google Scholar 

  29. Li, Z., Lai, K. Y.-T., McCrone, J., Yu, P.-H., Chakrabarty, K., Pajic, M., et al. (2018). Efficient and adaptive error recovery in a micro-electrode-dot-array digital microfluidic biochip. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 37(3), 601–614.

    Article  Google Scholar 

  30. Chen, Z., Teng, D. H.-Y., Wang, G. C.-J., & Fan, S.-K. (2011). Droplet routing in high-level synthesis of configurable digital microfluidic biochips based on microelectrode dot array architecture. Biochip Journal, 5(4), 343–352.

    Article  Google Scholar 

  31. Ho, T.-Y., Zeng, J., & Chakrabarty, K. (2010). Digital microfluidic biochips: A vision for functional diversity and more than moore. In Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 578–585.

    Google Scholar 

  32. Su, F., & Chakrabarty, K. (2004). Architectural-level synthesis of digital microfluidics-based biochips. In Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 223–228.

    Google Scholar 

  33. Su, F., Chakrabarty, K., & Fair, R. B. (2006). Microfluidics-based biochips: Technology issues, implementation platforms, and design-automation challenges. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25(2), 211–223.

    Article  Google Scholar 

  34. Huang, T.-W., Yeh, S.-Y., & Ho, T.-Y. (2011). A network-flow based pin-count aware routing algorithm for broadcast-addressing EWOD chips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 30(12), 1786–1799.

    Article  Google Scholar 

  35. Zhao, Y., Xu, T., & Chakrabarty, K. (2011). Broadcast electrode-addressing and scheduling methods for pin-constrained digital microfluidic biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 30(7), 986–999.

    Article  Google Scholar 

  36. Xu, T., & Chakrabarty, K. (2008). Broadcast electrode-addressing for pin-constrained multi-functional digital microfluidic biochips. In Proceedings of ACM/IEEE Design Automation Conference, pp. 173–178.

    Google Scholar 

  37. Shukla, V., Hussin, F. A., Hamid, N. H., & Zain Ali, N. B. (2017). Advances in testing techniques for digital microfluidic biochips. Sensors, 17(8), 1719.

    Article  Google Scholar 

  38. Mitra, D., Ghoshal, S., Rahaman, H., Chakrabarty, K., & Bhattacharya, B. B. (2011). Test planning in digital microfluidic biochips using efficient eulerization techniques. Journal of Electronic Testing Theory and Application, 27, 657–671.

    Article  Google Scholar 

  39. Li, Z., Dinh, T. A., Ho, T.-Y., & Chakrabarty, K. (2014). Reliability-driven pipelined scan-like testing of digital microfluidic biochips. In Proceedings of IEEE Asian Test Symposium, pp. 57–62.

    Google Scholar 

  40. Dinh, T. A., Yamashita, S., Ho, T.-Y., & Chakrabarty, K. (2015). A general testing method for digital microfluidic biochips under physical constraints. In Proceedings of IEEE International Test Conference, pp. 1–8.

    Google Scholar 

  41. Mukherjee, S., & Samanta, T. (2015). Distributed scan like fault detection and test optimization for digital microfluidic biochips. Journal of Electronic Testing, 31(3), 311–319.

    Article  Google Scholar 

  42. Bhattacharjee, S., Mitra, D., & Bhattacharya, B. B. (2017). Robust in-field testing of digital microfluidic biochips. ACM Journal on Emerging Technologies in Computing Systems, 14(1), 5.

    Article  Google Scholar 

  43. Xu, T., & Chakrabarty, K. (2007). Functional testing of digital microfluidic biochips. In Proceedings of IEEE International Test Conference, pp. 1–10.

    Google Scholar 

  44. Mitra, D., Ghoshal, S., Rahaman, H., Bhattacharya, B. B., Majumder, D. D., & Chakrabarty, K. (2008). Accelerated functional testing of digital microfluidic biochips. In IEEE Asian Test Symposium, pp. 295–300.

    Google Scholar 

  45. Xu, T., & Chakrabarty, K. (2009). Fault modeling and functional test methods for digital microfluidic biochips. IEEE Transactions on Biomedical Circuits and Systems, 3, 241–253.

    Article  Google Scholar 

  46. Maftei, E., Pop, P., & Madsen, J. (2009). Tabu search-based synthesis of dynamically reconfigurable digital microfluidic biochips. In Proceedings of International Conference on Compilers, Architecture, and Synthesis for Embedded Systems, pp. 195–204.

    Google Scholar 

  47. Grissom, D., & Brisk, P. (2012). Path scheduling on digital microfluidic biochips. In Proceedings of ACM/IEEE Design Automation Conference, pp. 26–35.

    Google Scholar 

  48. Zhao, Y., & Chakrabarty, K. (2012). Cross-contamination avoidance for droplet routing in digital microfluidic biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 31(6), 817–830.

    Article  Google Scholar 

  49. Grissom, D., & Brisk, P. (2012). Fast online synthesis of generally programmable digital microfluidic biochips. In Proceedings of IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, pp. 413–422.

    Google Scholar 

  50. Roy, S., Chakrabarti, P. P., Kumar, S., Chakrabarty, K., & Bhattacharya, B. B. (2015). Layout-aware mixture preparation of biochemical fluids on application-specific digital microfluidic biochips. ACM Transactions on Design Automation of Electronic Systems, 20(3), 45.

    Article  Google Scholar 

  51. Yu, S.-T., Yeh, S.-H., & Ho, T.-Y. (2015). Reliability-driven chip-level design for high-frequency digital microfluidic biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34(4), pp. 529–539.

    Article  Google Scholar 

  52. Keszocze, O., Wille, R., Ho, T.-Y., & Drechsler, R. (2014). Exact one-pass synthesis of digital microfluidic biochips. In Proceedings of ACM/IEEE Design Automation Conference, pp. 1–6.

    Google Scholar 

  53. Grissom, D., Curtis, C., Windh, S., Phung, C., Kumar, N., Zimmerman, Z., et al. (2015). An open-source compiler and PCB synthesis tool for digital microfluidic biochips. Integration, the VLSI Journal, 51, 169–193.

    Article  Google Scholar 

  54. Jaress, C., Brisk, P., & Grissom, D. (2015). Rapid online fault recovery for cyber-physical digital microfluidic biochips. In Proceedings of IEEE VLSI Test Symposium, pp. 1–6.

    Google Scholar 

  55. Xu, T., & Chakrabarty, K. (2007). Integrated droplet routing in the synthesis of microfluidic biochips. In ACM/IEEE Design Automation Conference, pp. 948–953.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Z., Chakrabarty, K., Ho, TY., Lee, CY. (2019). Introduction. In: Micro-Electrode-Dot-Array Digital Microfluidic Biochips. Springer, Cham. https://doi.org/10.1007/978-3-030-02964-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02964-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02963-0

  • Online ISBN: 978-3-030-02964-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics