Skip to main content

Parameter Estimation for Gaussian Processes with Application to the Model with Two Independent Fractional Brownian Motions

  • Conference paper
  • First Online:
Stochastic Processes and Applications (SPAS 2017)

Abstract

The purpose of the article is twofold. Firstly, we review some recent results on the maximum likelihood estimation in the regression model of the form \(X_t = \theta G(t) + B_t\), where B is a Gaussian process, G(t) is a known function, and \(\theta \) is an unknown drift parameter. The estimation techniques for the cases of discrete-time and continuous-time observations are presented. As examples, models with fractional Brownian motion, mixed fractional Brownian motion, and sub-fractional Brownian motion are considered. Secondly, we study in detail the model with two independent fractional Brownian motions and apply the general results mentioned above to this model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belfadli, R., Es-Sebaiy, K., Ouknine, Y.: Parameter estimation for fractional Ornstein–Uhlenbeck processes: non-ergodic case. Front. Sci. Eng. 1(1), 1–16 (2011)

    Google Scholar 

  2. Benassi, A., Cohen, S., Istas, J.: Identifying the multifractional function of a Gaussian process. Stat. Probab. Lett. 39(4), 337–345 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bercu, B., Coutin, L., Savy, N.: Sharp large deviations for the fractional Ornstein–Uhlenbeck process. Teor. Veroyatn. Primen. 55(4), 732–771 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berger, J., Wolpert, R.: Estimating the mean function of a Gaussian process and the Stein effect. J. Multivar. Anal. 13(3), 401–424 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bertin, K., Torres, S., Tudor, C.A.: Maximum-likelihood estimators and random walks in long memory models. Statistics 45(4), 361–374 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bojdecki, T., Gorostiza, L.G., Talarczyk, A.: Sub-fractional Brownian motion and its relation to occupation times. Stat. Probab. Lett. 69(4), 405–419 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cai, C., Chigansky, P., Kleptsyna, M.: Mixed Gaussian processes: a filtering approach. Ann. Probab. 44(4), 3032–3075 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cénac, P., Es-Sebaiy, K.: Almost sure central limit theorems for random ratios and applications to LSE for fractional Ornstein–Uhlenbeck processes. Probab. Math. Stat. 35(2), 285–300 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Cheridito, P.: Mixed fractional Brownian motion. Bernoulli 7(6), 913–934 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. El Machkouri, M., Es-Sebaiy, K., Ouknine, Y.: Least squares estimator for non-ergodic Ornstein–Uhlenbeck processes driven by Gaussian processes. J. Korean Stat. Soc. 45(3), 329–341 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Es-Sebaiy, K.: Berry–Esséen bounds for the least squares estimator for discretely observed fractional Ornstein–Uhlenbeck processes. Stat. Probab. Lett. 83(10), 2372–2385 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Es-Sebaiy, K., Ndiaye, D.: On drift estimation for non-ergodic fractional Ornstein–Uhlenbeck process with discrete observations. Afr. Stat. 9(1), 615–625 (2014)

    Google Scholar 

  13. Es-Sebaiy, K., Ouassou, I., Ouknine, Y.: Estimation of the drift of fractional Brownian motion. Stat. Probab. Lett. 79(14), 1647–1653 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Houdré, C., Villa, J.: An example of infinite dimensional quasi-helix. In: Stochastic Models: Seventh Symposium on Probability and Stochastic Processes, 23–28 June 2002, Mexico City, Mexico. Selected papers, pp. 195–201. American Mathematical Society (AMS), Providence, RI (2003)

    Google Scholar 

  15. Hu, Y., Nualart, D.: Parameter estimation for fractional Ornstein–Uhlenbeck processes. Stat. Probab. Lett. 80(11–12), 1030–1038 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu, Y., Song, J.: Parameter estimation for fractional Ornstein–Uhlenbeck processes with discrete observations. In: Malliavin calculus and stochastic analysis. A Festschrift in honor of David Nualart, pp. 427–442. Springer, New York (2013)

    Chapter  Google Scholar 

  17. Hu, Y., Nualart, D., Xiao, W., Zhang, W.: Exact maximum likelihood estimator for drift fractional Brownian motion at discrete observation. Acta Math. Sci. Ser. B Engl. Ed. 31(5), 1851–1859 (2011)

    Google Scholar 

  18. Hu, Y., Nualart, D., Zhou, H.: Parameter estimation for fractional Ornstein–Uhlenbeck processes of general Hurst parameter. arXiv preprint, arXiv:1703.09372 (2017)

  19. Ibragimov, I.A., Rozanov, Y.A.: Gaussian Random Processes. Applications of Mathematics, vol. 9. Springer, New York (1978)

    Chapter  Google Scholar 

  20. Kleptsyna, M.L., Le Breton, A.: Statistical analysis of the fractional Ornstein–Uhlenbeck type process. Stat. Inference Stoch. Process. 5, 229–248 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kozachenko, Y., Melnikov, A., Mishura, Y.: On drift parameter estimation in models with fractional Brownian motion. Statistics 49(1), 35–62 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kubilius, K., Mishura, Y.: The rate of convergence of Hurst index estimate for the stochastic differential equation. Stoch. Process. Appl. 122(11), 3718–3739 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kubilius, K., Mishura, Y., Ralchenko, K., Seleznjev, O.: Consistency of the drift parameter estimator for the discretized fractional Ornstein–Uhlenbeck process with Hurst index \(H\in (0,\frac{1}{2})\). Electron. J. Stat. 9(2), 1799–1825 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kubilius, K.e., Mishura, Y., Ralchenko, K.: Parameter Estimation in Fractional Diffusion Models. Bocconi & Springer Series, vol. 8. Bocconi University Press, Milan; Springer, Cham (2017)

    Book  MATH  Google Scholar 

  25. Kukush, A., Mishura, Y., Valkeila, E.: Statistical inference with fractional Brownian motion. Stat. Inference Stoch. Process. 8(1), 71–93 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Le Breton, A.: Filtering and parameter estimation in a simple linear system driven by a fractional Brownian motion. Stat. Probab. Lett. 38(3), 263–274 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mishura, Y.: Stochastic Calculus for Fractional Brownian Motion and Related Processes, vol. 1929. Springer Science & Business Media (2008)

    Google Scholar 

  28. Mishura, Y.: Maximum likelihood drift estimation for the mixing of two fractional Brownian motions. In: Stochastic and Infinite Dimensional Analysis, pp. 263–280. Springer, Berlin (2016)

    Google Scholar 

  29. Mishura, Y., Ralchenko, K.: On drift parameter estimation in models with fractional Brownian motion by discrete observations. Austrian J. Stat. 43(3), 218–228 (2014)

    Article  Google Scholar 

  30. Mishura, Y., Voronov, I.: Construction of maximum likelihood estimator in the mixed fractional-fractional Brownian motion model with double long-range dependence. Mod. Stoch. Theory Appl. 2(2), 147–164 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mishura, Y., Ralchenko, K.: Drift parameter estimation in the models involving fractional Brownian motion. In: Panov, V. (ed.) Modern Problems of Stochastic Analysis and Statistics: Selected Contributions in Honor of Valentin Konakov, pp. 237–268. Springer International Publishing, Cham (2017)

    MATH  Google Scholar 

  32. Mishura, Y., Ralchenko, K., Seleznev, O., Shevchenko, G.: Asymptotic properties of drift parameter estimator based on discrete observations of stochastic differential equation driven by fractional Brownian motion. In: Modern stochastics and Applications. Springer Optimization and Its Applications, vol. 90, pp. 303–318. Springer, Cham (2014)

    Google Scholar 

  33. Mishura, Y., Ralchenko, K., Shklyar, S.: Maximum likelihood drift estimation for Gaussian process with stationary increments. Austrian J. Stat. 46(3–4), 67–78 (2017)

    Article  MATH  Google Scholar 

  34. Mishura, Y., Ralchenko, K., Shklyar, S.: Maximum likelihood drift estimation for Gaussian process with stationary increments. Nonlinear Anal. Model. Control 23(1), 120–140 (2018)

    Article  MATH  Google Scholar 

  35. Norros, I., Valkeila, E., Virtamo, J.: An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli 5(4), 571–587 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Peltier, R.F., Lévy Véhel, J.: Multifractional Brownian motion: definition and preliminary results. INRIA Research Report, vol. 2645 (1995)

    Google Scholar 

  37. Polyanin, A., Manzhirov, A.: Handbook of Integral Equations, 2nd edn. Chapman & Hall/CRC, Boca Raton (2008)

    Google Scholar 

  38. Prakasa Rao, B.L.S.: Statistical Inference for Fractional Diffusion Processes. Wiley, Chichester (2010)

    Book  MATH  Google Scholar 

  39. Privault, N., Réveillac, A.: Stein estimation for the drift of Gaussian processes using the Malliavin calculus. Ann. Stat. 36(5), 2531–2550 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ralchenko, K.V., Shevchenko, G.M.: Paths properties of multifractal Brownian motion. Theory Probab. Math. Stat. 80, 119–130 (2010)

    Article  Google Scholar 

  41. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives. Taylor & Francis (1993)

    Google Scholar 

  42. Samuelson, P.A.: Rational theory of warrant pricing. Ind. Manag. Rev. 6(2), 13–32 (1965)

    Google Scholar 

  43. Shen, G., Yan, L.: Estimators for the drift of subfractional Brownian motion. Commun. Stat. Theory Methods 43(8), 1601–1612 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Tanaka, K.: Distributions of the maximum likelihood and minimum contrast estimators associated with the fractional Ornstein–Uhlenbeck process. Stat. Inference Stoch. Process. 16, 173–192 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Tanaka, K.: Maximum likelihood estimation for the non-ergodic fractional Ornstein–Uhlenbeck process. Stat. Inference Stoch. Process. 18(3), 315–332 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tudor, C.: Some properties of the sub-fractional Brownian motion. Stochastics 79(5), 431–448 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Tudor, C.A., Viens, F.G.: Statistical aspects of the fractional stochastic calculus. Ann. Stat. 35(3), 1183–1212 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Xiao, W., Zhang, W., Xu, W.: Parameter estimation for fractional Ornstein–Uhlenbeck processes at discrete observation. Appl. Math. Model. 35, 4196–4207 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Xiao, W.L., Zhang, W.G., Zhang, X.L.: Maximum-likelihood estimators in the mixed fractional Brownian motion. Statistics 45, 73–85 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zabreyko, P.P., Koshelev, A.I., Krasnosel’skii, M.A., Mikhlin, S.G., Rakovshchik, L.S., Stet’senko, V.Y.: Integral Equations: A Reference Text. Noordhoff, Leyden (1975)

    Google Scholar 

Download references

Acknowledgements

The research of Yu. Mishura was funded (partially) by the Australian Government through the Australian Research Council (project number DP150102758). Yu. Mishura and K. Ralchenko acknowledge that the present research is carried through within the frame and support of the ToppForsk project nr. 274410 of the Research Council of Norway with title STORM: Stochastics for Time-Space Risk Models.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuliya Mishura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mishura, Y., Ralchenko, K., Shklyar, S. (2018). Parameter Estimation for Gaussian Processes with Application to the Model with Two Independent Fractional Brownian Motions. In: Silvestrov, S., Malyarenko, A., Rančić, M. (eds) Stochastic Processes and Applications. SPAS 2017. Springer Proceedings in Mathematics & Statistics, vol 271. Springer, Cham. https://doi.org/10.1007/978-3-030-02825-1_6

Download citation

Publish with us

Policies and ethics