Skip to main content

Time Dependent Solutions for the Biot Equations

  • Chapter
  • First Online:
Analysis as a Life

Part of the book series: Trends in Mathematics ((TM))

  • 543 Accesses

Abstract

In this paper we show that the Biot model for the ultrasound interrogation of bone rigidity, under certain restrictions, can be shown to lead to a unique solution. More precisely, we consider the classical experimental method for measuring bone parameters, that is where a bone sample in a water bath and the bone sample interrogated with an ultrasound devise. This procedure leads to an inverse problem where the ultrasound signal is measured in various positions in the water tank. In order to solve the inverse problem an accurate forward solver is necessary. It is shown that the forward problem may be formulated in terms of a boundary element method. To this end, the Biot system of equations describing the acoustic interaction with a porous material is written in a convenient, compact form. The system, and the transition conditions between the porous material, are rewritten in a Laplace transformed space. The transformed problem is reformulated as a nonlocal boundary problem. Using a variational approach it is shown that the variational problem is equivalent to a nonlocal problem and the solution is shown to be unique. We then use Lubisch’s approach to find estimates in the time domain without recourse to using the inverse Laplace transformation.

Dedicated to Heinrich Begehr for his 80 Jubilee

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Lower frequency range. J. Acoust. Soc Am. 28(2), 168–178 (1956)

    Article  Google Scholar 

  2. M.A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am. 28(2), 179–191 (1956)

    Article  Google Scholar 

  3. J.L. Buchanan, R.P. Gilbert, Determination of the parameters of cancellous bone using high frequency acoustic measurements. Math. Comput. Model. 45, 281–308 (2007)

    Article  MathSciNet  Google Scholar 

  4. J.L. Buchanan, R.P. Gilbert, K. Khashanah, Recovery of the poroelastic parameters of cancellous bone using low frequency acoustic interrogation, in Acoustics, Mechanics, and the Related Topics of Mathematical Analysis, ed. by A. Wirgin (World Scientific, Singapore, 2002), pp. 41–47

    MATH  Google Scholar 

  5. J.L. Buchanan, R.P. Gilbert, K. Khashanah, Determination of the parameters of cancellous bone using low frequency acoustic measurements. J. Comput. Acoust. 12(2), 99–126 (2004)

    Article  Google Scholar 

  6. S. Chaffai, F. Padilla, G. Berger, P. Languier, In vitro measurement of the frequency dependent attenuation in cancellous bone between 0.2 and 2 MHz. J. Acoust. Soc. Am. 108, 1281–1289 (2000)

    Article  Google Scholar 

  7. Th. Clopeau, J.L. Ferrin, R.P. Gilbert, A. Mikelić, Homogenizing the acoustic properties of the seabed. Math. Comput. Model. 33, 821–841 (2001)

    Article  MathSciNet  Google Scholar 

  8. R.P. Gilbert, A. Mikelic, Homogenizing the acoustic properties of the seabed: part I. Nonlinear Anal. 40, 185–212 (2000)

    Article  MathSciNet  Google Scholar 

  9. R. Gilbert, A. Panchenko, Effective acoustic equations for a two-phase medium with microstructure. Math. Comput. Model. 39, 1431–1448 (2004)

    Article  MathSciNet  Google Scholar 

  10. R. Hodgskinson, C.F. Njeh, J.D. Currey, C.M. Langton, The ability of ultrasound velocity to predict the stiffness of cancellous bone in vitro. Bone 21, 183–190 (1997)

    Article  Google Scholar 

  11. L. Hörmander, Linear Partial Differential Operators (Springer, Berlin, 1963)

    Google Scholar 

  12. A. Hosokawa, T. Otani, Ultrasonic wave propagation in bovine cancellous bone. J. Acoust. Soc. Am. 101, 558–562 (1997)

    Article  Google Scholar 

  13. G.C. Hsiao, W.L. Wendland, Boundary Integral Equations (Springer, Heidelberg, 2008)

    Book  Google Scholar 

  14. G.C. Hsiao, T. S’anchez-Vizuet, F.-J. Sayas, Boundary and coupled boundary-finite element methods for transient wave-structure interaction. IMA J. Numer. Anal. 37, 237–265 (2016)

    Article  MathSciNet  Google Scholar 

  15. G.C. Hsiao, F.-J. Sayas, R.J. Weinacht, Time-dependent fluid-structure interaction. Math. Methods Appl. Sci. 40, 486–500 (2017). Article first published online 19 Mar 2015 in Wiley Online Library, http://dx.doi.org/10.1002/mma.3427 (http://dx.doi.org/10.102/mma.3427, 2015)

    Google Scholar 

  16. G.C. Hsiao, O. Steinbach, W.L. Wendland, Boundary element methods: foundation and error analysis, in Encyclopedia of Computational Mechanics, 2nd edn., ed. by E. Stein et al. (Chichester, Wiley, 2017), pp. 1–62

    Google Scholar 

  17. G.C. Hsiao, T. Sánchez-Vizuet, F.-J. Sayas, R.J. Weinacht, A time-dependent fluid-thermoelastic solid interaction. IMA J. Numer. Anal. 1–33 (2018). https://doi.org/10.1093/imanum/dry016

  18. D.L. Johnson, J. Koplik, R. Dashen, Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid. Mech. 176, 379–402 (1987)

    Article  Google Scholar 

  19. A.R. Laliena, F.-J. Sayas, Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves. Numer. Math. 112, 637–678 (2009)

    Article  MathSciNet  Google Scholar 

  20. Ch. Lubich, On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations. Numer. Math. 67, 365–389 (1994)

    Article  MathSciNet  Google Scholar 

  21. Ch. Lubich, R. Schneider, Time discretization of parabolic boundary integral equations. Numer. Math. 63(4), 455–481 (1992)

    Article  MathSciNet  Google Scholar 

  22. P.M. Morse, H. Feshbach, Methods of Theoretical Physics, Part II (McGraw-Hill Book Company, New York, 1953)

    MATH  Google Scholar 

  23. M.L. McKelvie, S.B. Palmer, The interaction of ultrasound with cancellous bone. Phys. Med. Biol. 10, 1331–1340 (1991)

    Article  Google Scholar 

  24. F.-J. Sayas, Retarded Potentials and Time Domain Boundary Integral Equations: A Road-Map. Computational Mathematics, vol. 50 (Springer, Berlin, 2016)

    Chapter  Google Scholar 

  25. M. Schanz, Dynamic poroelasticity treated by a time domain boundary element method, in IUTAM/ACM/IABEM Symposium on Advanced Mathematical and Computational Mechanics Aspects of the Boundary Element Method, ed. by T. Burczynski (Kluwer Academic Publishers, Dordrecht, 2001), pp. 303–314

    Google Scholar 

  26. M. Schanz, Wave Propagation in Viscoelastic and Poroelastic Continua. Lecture Notes in Applied Mechanics, vol. 1 (Springer, Berlin, 2001)

    Chapter  Google Scholar 

  27. G.B. Whitham, Linear and Nonlinear Waves. Pure and Applied Mathematics (Wiley, New York, 1973)

    MATH  Google Scholar 

  28. J.L. Williams, Prediction of some experimental results by Biot’s theory. J. Acoust. Soc. Am. 91, 1106–1112 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert P. Gilbert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gilbert, R.P., Hsiao, G.C. (2019). Time Dependent Solutions for the Biot Equations. In: Rogosin, S., Çelebi, A. (eds) Analysis as a Life. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-02650-9_9

Download citation

Publish with us

Policies and ethics