Skip to main content

Nanotechnology for Oil-Water Separation

  • Chapter
  • First Online:
Advanced Research in Nanosciences for Water Technology

Abstract

The contamination of oceanic and ground water sources due to oil seepages and industrial waste solvents has emerged as a global issue urging for immediate counter measures to epitomize the catastrophic repercussions on sensitive ecological system. In this sense, various advanced techniques have been explored for the effective oil/solvent-water separation. Recently, researchers have focused on nanomaterials for efficient oil/solvent-water separation, as they render highly active surface area, improved functionality with ability to tailor the properties, and nano-scale dispersion. The oil/solvent-water separation is widely achieved via superwetting phenomena, i.e., superhydrophobic/superhydrophilic, superoleophobic/superoleophilic, which leverages selective wettability towards oil/solvents or water. The superwetting materials can be fabricated by engineering the porous surface-architecture and nano/micro-scaled hierarchical surface roughness. Various nano-functionalized superwetting materials like Janus fabrics, membranes, nanofibers, sponges/foams, and meshes have been explored for the treatment of oil/solvent-water emulsions, as they render high separation efficiency, recyclability, mechanical durability, and high performance against harsh environments. These superwetting nano-engineered materials are promising potential candidates for treating oil/solvent-water emulsions in large quantities, as compared to traditional separation techniques in the near future. In this book chapter, we have discussed the recent advances on superwetting nano-engineered Janus materials, foams, and sponges for the efficient oil/solvent-water separation, along with the governing principle theories such as Wenzel, and Cassie-Baxter. We have also discussed the fabrication methods for these materials, followed by a summary and future scope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amal Raj RB, Gonte RR, Balasubramanian K (2017) Dual functional styrene-maleic acid copolymer beads: toxic metals adsorbent and hydrogen storage. In: Enhancing cleanup of environmental pollutants. Springer International Publishing, Cham, pp 255–295

    Chapter  Google Scholar 

  • Arora R, Balasubramanian K (2014) Hierarchically porous PVDF/nano-SiC foam for distant oil-spill cleanups. RSC Adv 4:53761–53767

    Article  CAS  Google Scholar 

  • Arora R, Singh N, Balasubramanian K, Alegaonkar P (2014) Electroless nickel coated nano-clay for electrolytic removal of Hg(ii) ions. RSC Adv 4:50614–50623

    Article  CAS  Google Scholar 

  • Balasubramanian K, Sharma S, Badwe S, Banerjee B (2015) Tailored non-woven electrospun mesh of poly-Ethyleneoxide-keratin for radioactive metal ion sorption. J Green Sci Technol 2:10–19

    Article  Google Scholar 

  • Banerjee BS, Balasubramanian K (2015) Nanotexturing of PC/n-HA nanocomposites by innovative and advanced spray system. RSC Adv 5:13653–13659

    Article  CAS  Google Scholar 

  • Bastani D, Safekordi AA, Alihosseini A, Taghikhani V (2006) Study of oil sorption by expanded perlite at 298.15 K. Sep Purif Technol 52:295–300

    Article  CAS  Google Scholar 

  • Bhalara PD, Balasubramanian K, Banerjee BS (2015) Spider–web textured electrospun composite of graphene for sorption of Hg(II) ions. Mater Focus 4:154–163

    Article  CAS  Google Scholar 

  • Bhalara PD, Punetha D, Balasubramanian K (2014) A review of potential remediation techniques for uranium(VI) ion retrieval from contaminated aqueous environment. J Environ Chem Eng 2:1621–1634

    Article  CAS  Google Scholar 

  • Bhushan B, Jung YC, Koch K (2009) Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philos Trans R Soc A Math Phys Eng Sci 367:1631–1672

    Article  CAS  Google Scholar 

  • Birley AW, Haworth B, Batchelor J (1992) Physics of plastics: processing, properties and materials engineering. Hanser Publishers, Munich

    Google Scholar 

  • Breitwieser M, Klingele M, Vierrath S (2018) Tailoring the membrane-electrode interface in PEM fuel cells: a review and perspective on novel engineering approaches. Adv Energy Mater 8:1701257

    Article  CAS  Google Scholar 

  • Brown PS, Bhushan B (2015) Mechanically durable, superoleophobic coatings prepared by layer-by-layer technique for anti-smudge and oil-water separation. Sci Rep 5:8701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brueckner T, Eberl A, Heumann S (2008) Enzymatic and chemical hydrolysis of polyethylene terephthalate fabrics. J Polym Sci Part A Polym Chem 46:6435–6443

    Article  CAS  Google Scholar 

  • Brydson JA (1999) Polycarbonates. In: Plastics materials. Elsevier, Amsterdam, pp 556–583

    Chapter  Google Scholar 

  • Burkarter E, Saul CK, Thomazi F (2007) Superhydrophobic electrosprayed PTFE. Surf Coatings Technol 202:194–198

    Article  CAS  Google Scholar 

  • Buxbaum LH (1968) The degradation of poly(ethylene terephthalate). Angew Chemie Int Ed English 7:182–190

    Article  CAS  Google Scholar 

  • Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  CAS  Google Scholar 

  • Cecen V, Seki Y, Sarikanat M, Tavman IH (2008) FTIR and SEM analysis of polyester- and epoxy-based composites manufactured by VARTM process. J Appl Polym Sci 108:2163–2170

    Article  CAS  Google Scholar 

  • Chemours (2016) Teflon PTFE DISP 30LX Fluoroplastic dispersion product information

    Google Scholar 

  • Cheng Z, Gao J, Jiang L (2010) Tip geometry controls adhesive states of superhydrophobic surfaces. Langmuir 26:8233–8238

    Article  CAS  PubMed  Google Scholar 

  • Cheng B, Li Z, Li Q, Naebe M (2017) Development of smart poly(vinylidene fluoride)-graft-poly(acrylic acid) tree-like nanofiber membrane for pH-responsive oil/water separation. J Memb Sci 534:1–8

    Article  CAS  Google Scholar 

  • Chhatre SS, Choi W, Tuteja A (2010) Scale dependence of omniphobic mesh surfaces. Langmuir 26:4027–4035

    Article  CAS  PubMed  Google Scholar 

  • Choi W, Tuteja A, Chhatre S (2009) Fabrics with tunable oleophobicity. Adv Mater 21:2190–2195

    Article  CAS  Google Scholar 

  • Darmanin T, Guittard F (2015) Superhydrophobic and superoleophobic properties in nature. Mater Today 18:273–285

    Article  CAS  Google Scholar 

  • Demir T, Wei L, Nitta N (2017) Toward a long-chain Perfluoroalkyl replacement: water and oil repellency of polyethylene terephthalate (PET) films modified with Perfluoropolyether-based polyesters. ACS Appl Mater Interfaces 9:24318–24330

    Article  CAS  PubMed  Google Scholar 

  • Dhanshetty M, Balasubramanian K (2016) Seamless coupled breathable nanocomposite Janus. In: Proceedings of 50th IRF International Conference, Pune, pp 5–10

    Google Scholar 

  • Dorrer C, Rühe J (2007) Condensation and wetting transitions on microstructured ultrahydrophobic surfaces. Langmuir 23:3820–3824

    Article  CAS  PubMed  Google Scholar 

  • Drobny JG (2016) Fluorine-containing polymers. In: Brydson’s plastics materials: eighth edition. Elsevier, Oxford, pp 389–425

    Google Scholar 

  • Dybal J, Schmidt P, Baldrian J, Kratochvíl J (1998) Ordered structures in polycarbonate studied by infrared and Raman spectroscopy, wide-angle X-ray scattering, and differential scanning calorimetry. Macromolecules 31:6611–6619

    Article  CAS  Google Scholar 

  • Fernández A, Francone A, Thamdrup LH (2017) Design of hierarchical surfaces for tuning wetting characteristics. ACS Appl Mater Interfaces 9:7701–7709

    Article  PubMed  CAS  Google Scholar 

  • Fingas M (2012) The basics of oil spill cleanup, 3rd edn. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Fingas M (2015) Handbook of oil spill science and technology. John Wiley & Sons, New York

    Google Scholar 

  • Georgiev A, Karamancheva I, Dimov D (2008) FTIR study of the structures of vapor deposited PMDA-ODA film in presence of copper phthalocyanine. J Mol Struct 888:214–223

    Article  CAS  Google Scholar 

  • Ghorbel E, Hadriche I, Casalino G, Masmoudi N (2014) Characterization of thermo-mechanical and fracture behaviors of thermoplastic polymers. Materials (Basel) 7:375–398

    Article  CAS  PubMed Central  Google Scholar 

  • Gonte R, Balasubramanian K (2016) Heavy and toxic metal uptake by mesoporous hypercrosslinked SMA beads: isotherms and kinetics. J Saudi Chem Soc 20:S579–S590

    Article  CAS  Google Scholar 

  • Gonte RR, Shelar G, Balasubramanian K (2014) Polymer–agro-waste composites for removal of Congo red dye from wastewater: adsorption isotherms and kinetics. Desalin Water Treat 52:7797–7811

    Article  CAS  Google Scholar 

  • Gore PM, Dhanshetty M, Kandasubramanian B (2016a) Bionic creation of nano-engineered Janus fabric for selective oil/organic solvent absorption. RSC Adv 6:111250–111260

    Article  CAS  Google Scholar 

  • Gore PM, Kandasubramanian B (2018) Heterogeneous wettable cotton based superhydrophobic Janus biofabric engineered with PLA/functionalized-organoclay microfibers for efficient oil-water separation. J Mater Chem A 6:7457–7479

    Article  CAS  Google Scholar 

  • Gore P, Khraisheh M, Kandasubramanian B (2018a) Nanofibers of resorcinol–formaldehyde for effective adsorption of As (III) ions from mimicked effluents. Environ Sci Pollut Res 25:11729–11745

    Article  CAS  Google Scholar 

  • Gore PM, Khurana L, Dixit R, Balasubramanian K (2017) Keratin-Nylon 6 engineered microbeads for adsorption of Th (IV) ions from liquid effluents. J Environ Chem Eng 5:5655–5667

    Article  CAS  Google Scholar 

  • Gore PM, Khurana L, Siddique S (2018b) Ion-imprinted electrospun nanofibers of chitosan/1-butyl-3-methylimidazolium tetrafluoroborate for the dynamic expulsion of thorium (IV) ions from mimicked effluents. Environ Sci Pollut Res 25:3320–3334

    Article  CAS  Google Scholar 

  • Gore PM, Zachariah S, Gupta P, Balasubramanian K (2016b) Multifunctional nano-engineered and bio-mimicking smart superhydrophobic reticulated ABS/fumed silica composite thin films with heat-sinking applications. RSC Adv 6:105180–105191

    Article  CAS  Google Scholar 

  • Gu J, Xiao P, Chen P (2017) Functionalization of biodegradable PLA nonwoven fabric as Superoleophilic and Superhydrophobic material for efficient oil absorption and oil/water separation. ACS Appl Mater Interfaces 9:5968–5973

    Article  CAS  PubMed  Google Scholar 

  • Gupta RK, Dunderdale GJ, England MW, Hozumi A (2017) Oil/water separation techniques: a review of recent progresses and future directions. J Mater Chem A 5:16025–16058

    Article  CAS  Google Scholar 

  • Gupta P, Kandasubramanian B (2017) Directional fluid gating by Janus membranes with heterogeneous wetting properties for selective oil-water separation. ACS Appl Mater Interfaces 9:19102–19113

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Lapalikar V, Kundu R, Balasubramanian K (2016) Recent advances in membrane based waste water treatment technology: a review. Energy Environ Focus 5:241–267

    Article  Google Scholar 

  • Hansen KA (2016) Physical spill countermeasures on water-response in fast currents. In: Oil spill science and technology: second edition. Elsevier, New York, NY, pp 455–482

    Google Scholar 

  • Homaeigohar SS, Buhr K, Ebert K (2010) Polyethersulfone electrospun nanofibrous composite membrane for liquid filtration. J Memb Sci 365:68–77

    Article  CAS  Google Scholar 

  • Huang Q, Xiao C, Hu X, An S (2011) Fabrication and properties of poly(tetrafluoroethylene-co- hexafluoropropylene) hollow fiber membranes. J Mater Chem 21:16510–16516

    Article  CAS  Google Scholar 

  • Hudlikar M, Balasubramanian K, Kodam K (2014) Towards the enhancement of antimicrobial efficacy and hydrophobization of chitosan. J Chitin Chitosan Sci 2:273–279

    Article  Google Scholar 

  • Hunger K (ed) (2002) Industrial dyes. Wiley-VCH Verlag GmbH & co. KGaA, Weinheim, FRG

    Google Scholar 

  • Jiang J (ed) (2010) Functional Phthalocyanine molecular materials. Springer Berlin Heidelberg, Berlin

    Google Scholar 

  • Kamo N, Kurosawa S (1992) Characteristics of sorption of various gases to plasma-polymerized copper Phthalocyanine. Langmuir 8:254–256

    Article  Google Scholar 

  • Khanale M, Balasubramanian K (2016) Molecular simulation of geometrically optimized polyoxymethylene/poly (vinylalcohol) gel membrane for electroless scrubbing Ni(II) ions. J Environ Chem Eng 4:434–439

    Article  CAS  Google Scholar 

  • Khosravi M, Azizian S (2017) Preparation of superhydrophobic and superoleophilic nanostructured layer on steel mesh for oil-water separation. Sep Purif Technol 172:366–373

    Article  CAS  Google Scholar 

  • Khurana L, Balasubramanian K (2016) Adsorption potency of imprinted starch/PVA polymers confined ionic liquid with molecular simulation framework. J Environ Chem Eng 4:2147–2154

    Article  CAS  Google Scholar 

  • Lebold A, Smithies A, Andrew E (2000) Fluorocarbon particle coated textiles for use in electrostatic printing machines. p 1–7

    Google Scholar 

  • Li J, Huang ZQ, Xue C (2018) Facile preparation of novel hydrophobic sponges coated by Cu2O with different crystal facet structure for selective oil absorption and oil/water separation. J Mater Sci 53:10025–10038

    Article  CAS  Google Scholar 

  • Liang W, Guo Z (2013) Stable superhydrophobic and superoleophilic soft porous materials for oil/water separation. RSC Adv 3:16469–16474

    Article  CAS  Google Scholar 

  • Lim HCA (2016) Thermoplastic polyesters. In: Brydson’s plastics materials: eighth edition. Elsevier, Oxford, pp 527–543

    Google Scholar 

  • Lin X, Yang M, Jeong H (2016) Durable superhydrophilic coatings formed for anti-biofouling and oil-water separation. J Memb Sci 506:22–30

    Article  CAS  Google Scholar 

  • Liu M, Hou Y, Li J, Guo Z (2017) Stable superwetting meshes for on-demand separation of immiscible oil/water mixtures and emulsions. Langmuir 33:3702–3710

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Cheng H, Fane AG (2016) Recent development of advanced materials with special wettability for selective oil/water separation. Small 12:2186–2202

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Guo Z, Zhao J (2017) Polyimide/cellulose acetate core/shell electrospun fibrous membranes for oil-water separation. Sep Purif Technol 177:71–85

    Article  CAS  Google Scholar 

  • Makowski T, Grala M, Fortuniak W (2016) Electrical properties of hydrophobic polyester and woven fabrics with conducting 3D network of multiwall carbon nanotubes. Mater Des 90:1026–1033

    Article  CAS  Google Scholar 

  • Mates JE, Schutzius TM, Qin J (2014) The fluid diode: tunable unidirectional flow through porous substrates. ACS Appl Mater Interfaces 6:12837–12843

    Article  CAS  PubMed  Google Scholar 

  • Matsubayashi T, Tenjimbayashi M, Komine M (2017) Bioinspired hydrogel-coated mesh with superhydrophilicity and underwater superoleophobicity for efficient and ultrafast oil/water separation in harsh environments. Ind Eng Chem Res 56:7080–7085

    Article  CAS  Google Scholar 

  • Mishra P, Balasubramanian K (2014) Nanostructured microporous polymer composite imprinted with superhydrophobic camphor soot, for emphatic oil-water separation. RSC Adv 4:53291–53296

    Article  CAS  Google Scholar 

  • Moser FH, Thomas AL (1964) Phthalocyanine compounds. J Chem Educ 41:245

    Article  CAS  Google Scholar 

  • Padaki M, Surya Murali R, Abdullah MS (2015) Membrane technology enhancement in oil-water separation. A review. Desalination 357:197–207

    Article  CAS  Google Scholar 

  • Padhi S, Gosavi S, Ramdayal Yadav BK (2018) Quantitative evolution of wetting phenomena for super hydrophobic surfaces. Mater Focus 7:305–315

    Article  CAS  Google Scholar 

  • Padma N, Joshi A, Singh A (2009) NO2 sensors with room temperature operation and long term stability using copper phthalocyanine thin films. Sensors Actuators B Chem 143:246–252

    Article  CAS  Google Scholar 

  • Pan Q, Wang M, Wang H (2008) Separating small amount of water and hydrophobic solvents by novel superhydrophobic copper meshes. Appl Surf Sci 254:6002–6006

    Article  CAS  Google Scholar 

  • Parshin AM, Gunyakov VA, Zyryanov VY, Shabanov VF (2013) Domain structures in nematic liquid crystals on a polycarbonate surface. Int J Mol Sci 14:16303–16320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parvinzadeh M, Ebrahimi I (2011) Influence of atmospheric-air plasma on the coating of a nonionic lubricating agent on polyester fiber. Radiat Eff Defects Solids 166:408–416

    Article  CAS  Google Scholar 

  • Qi H, Sui K, Ma Z et al (2002) Polymeric fluorocarbon-coated polyester substrates for waterproof breathable fabrics. Text Res J 72:93–97

    Article  CAS  Google Scholar 

  • Ramalho A, Miranda JC (2005) Friction and wear of electroless NiP and NiP + PTFE coatings. Wear 259:828–834

    Article  CAS  Google Scholar 

  • Rezaeifard A, Jafarpour M, Naeimi A, Salimi M (2012) Efficient and highly selective aqueous oxidation of alcohols and sulfides catalyzed by reusable hydrophobic copper (II) phthalocyanine. Inorg Chem Commun 15:230–234

    Article  CAS  Google Scholar 

  • Rule P, Balasubramanian K, Gonte RR (2014) Uranium(VI) remediation from aqueous environment using impregnated cellulose beads. J Environ Radioact 136:22–29

    Article  CAS  PubMed  Google Scholar 

  • Sahoo BN, Balasubramanian K (2014) Facile synthesis of nano cauliflower and nano broccoli like hierarchical superhydrophobic composite coating using PVDF/carbon soot particles via gelation technique. J Colloid Interface Sci 436:111–121

    Article  CAS  PubMed  Google Scholar 

  • Sahoo BN, Balasubramanian K, Sucheendran MM (2015) Thermally triggered transition of superhydrophobic characteristics of micro and Nano textured multiscale rough surfaces. J Phys Chem C 119(25):14201–14213

    CAS  Google Scholar 

  • Sahoo BN, Kandasubramanian B (2014a) An experimental design for the investigation of water repellent property of candle soot particles. Mater Chem Phys 148:134–142

    Article  CAS  Google Scholar 

  • Sahoo BN, Kandasubramanian B (2014b) Recent progress in fabrication and characterisation of hierarchical biomimetic superhydrophobic structures. RSC Adv 4:22053–22093

    Article  CAS  Google Scholar 

  • Sahoo BN, Kandasubramanian B (2014c) Photoluminescent carbon soot particles derived from controlled combustion of camphor for superhydrophobic applications. RSC Adv 4:11331–11342

    Article  CAS  Google Scholar 

  • Sahoo BN, Kandasubramanian B, Sabarish B (2013) Controlled anisotropic wetting behaviour of multi-scale slippery surface structure of non fluoro polymer composite. Express Polym Lett 7:900–909

    Article  CAS  Google Scholar 

  • Sahoo BN, Sabarish B, Balasubramanian K (2014) Controlled fabrication of non-fluoro polymer composite film with hierarchically nano structured fibers. Prog Org Coatings 77:904–907

    Article  CAS  Google Scholar 

  • Saini S, Kandasubramanian B (2018) Engineered smart textiles and Janus microparticles for diverse functional industrial applications. Polym Plast Technol Eng:1–17. https://doi.org/10.1080/03602559.2018.1466177

    Article  CAS  Google Scholar 

  • Salzman RF, Xue J, Rand BP (2005) The effects of copper phthalocyanine purity on organic solar cell performance. Org Electron Phys Mater Appl 6:242–246

    CAS  Google Scholar 

  • Sarwar N, Mohsin M, Bhatti AA (2017) Development of water and energy efficient environment friendly easy care finishing by foam coating on stretch denim fabric. J Clean Prod 154:159–166

    Article  CAS  Google Scholar 

  • Schwieger T, Peisert H, Golden MS (2002) Electronic structure of the organic semiconductor copper phthalocyanine and K-CuPc studied using photoemission spectroscopy. Phys Rev B 66:155207

    Article  CAS  Google Scholar 

  • Seoudi R, El-Bahy GS, El Sayed ZA (2005) FTIR, TGA and DC electrical conductivity studies of phthalocyanine and its complexes. J Mol Struct 753:119–126

    Article  CAS  Google Scholar 

  • Serrano-Saldaña E, Domínguez-Ortiz A, Pérez-Aguilar H (2004) Wettability of solid/brine/n-dodecane systems: experimental study of the effects of ionic strength and surfactant concentration. Colloids Surf A Physicochem Eng Asp 241:343–349

    Article  CAS  Google Scholar 

  • Sharma S, Balasubramanian K, Arora R (2016) Adsorption of arsenic (V) ions onto cellulosic-ferric oxide system: kinetics and isotherm studies. Desalin Water Treat 57:9420–9436

    Article  CAS  Google Scholar 

  • Shi H, He Y, Pan Y (2016) A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation. J Memb Sci 506:60–70

    Article  CAS  Google Scholar 

  • Si Y, Fu Q, Wang X (2015) Superelastic and Superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions. ACS Nano 9:3791–3799

    Article  CAS  PubMed  Google Scholar 

  • Simon S, Kandasubramanian B (2018) Facile immobilization of camphor soot on electrospun hydrophobic membrane for oil-water separation. Mater Focus 7:295–303

    Article  CAS  Google Scholar 

  • Simon S, Malik A, Kandasubramanian B (2018) Hierarchical electrospun super-hydrophobic nanocomposites of fluoroelastomer. Mater Focus 7:194–206

    Article  CAS  Google Scholar 

  • Smith C (1980) Fire retardant polyester-polytetrafluoroethylene compositions

    Google Scholar 

  • Song J, Huang S, Lu Y (2014) Self-driven one-step oil removal from oil spill on water via selective-wettability steel mesh. ACS Appl Mater Interfaces 6:19858–19865

    Article  CAS  PubMed  Google Scholar 

  • Sun M, Watson GS, Zheng Y (2009) Wetting properties on nanostructured surfaces of cicada wings. J Exp Biol 212:3148–3155

    Article  PubMed  Google Scholar 

  • Tang X, Si Y, Ge J (2013) In situ polymerized superhydrophobic and superoleophilic nanofibrous membranes for gravity driven oil-water separation. Nanoscale 5:11657–11664

    Article  CAS  PubMed  Google Scholar 

  • Testa RB, Yu LM (1987) Stress-strain relation for coated fabrics. J Eng Mech 113:1631–1646

    Article  Google Scholar 

  • Tian X, Li J, Wang X (2012b) Anisotropic liquid penetration arising from a cross-sectional wettability gradient. Soft Matter 8:2633–2637

    Article  CAS  Google Scholar 

  • Tian Y, Su B, Jiang L (2014) Interfacial material system exhibiting superwettability. Adv Mater 26:6872–6897

    Article  CAS  PubMed  Google Scholar 

  • Tian D, Zhang X, Tian Y (2012a) Photo-induced water-oil separation based on switchable superhydrophobicity- superhydrophilicity and underwater superoleophobicity of the aligned ZnO nanorod array-coated mesh films. J Mater Chem 22:19652–19657

    Article  CAS  Google Scholar 

  • Tuteja A, Choi W, Mabry JM (2008a) Robust omniphobic surfaces. Proc Natl Acad Sci USA 105:18200–18205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuteja A, Choi W, McKinley GH (2008b) Design parameters for superhydrophobicity and superoleophobicity. MRS Bull 33:752–758

    Article  CAS  Google Scholar 

  • Walker AH, Scholz D, McPeek M (2018) Comparative risk assessment of spill response options for a deepwater oil well blowout: part III. Stakeholder engagement. Mar Pollut Bull 133:970. https://doi.org/10.1016/j.marpolbul.2018.05.009

    Article  CAS  PubMed  Google Scholar 

  • Walther A, Müller AHE (2008) Janus particles. Soft Matter 4:663–668

    Article  CAS  PubMed  Google Scholar 

  • Walther A, Müller AHE (2013) Janus particles: synthesis, self-assembly, physical properties, and applications. Chem Rev 113:5194–5261

    Article  CAS  PubMed  Google Scholar 

  • Wang G, He Y, Wang H (2015c) A cellulose sponge with robust superhydrophilicity and under-water superoleophobicity for highly effective oil/water separation. Green Chem 17:3093–3099

    Article  CAS  Google Scholar 

  • Wang B, Liang W, Guo Z, Liu W (2015a) Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chem Soc Rev 44:336–361

    Article  PubMed  Google Scholar 

  • Wang E, Wang H, Liu Z (2015b) One-step fabrication of a nickel foam-based superhydrophobic and superoleophilic box for continuous oil–water separation. J Mater Sci 50:4707–4716

    Article  CAS  Google Scholar 

  • Wang H, Zhou H, Niu H (2015d) Dual-layer superamphiphobic/superhydrophobic-oleophilic nanofibrous membranes with unidirectional oil-transport ability and strengthened oil-water separation performance. Adv Mater Interfaces 2:1400506

    Article  CAS  Google Scholar 

  • Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994

    Article  CAS  Google Scholar 

  • Wu L, Li L, Li B (2015) Magnetic, durable, and superhydrophobic polyurethane@Fe3O4@SiO2@fluoropolymer sponges for selective oil absorption and oil/water separation. ACS Appl Mater Interfaces 7:4936–4946

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Zhang J, Li B, Wang A (2014) Mechanical- and oil-durable superhydrophobic polyester materials for selective oil absorption and oil/water separation. J Colloid Interface Sci 413:112–117

    Article  CAS  PubMed  Google Scholar 

  • Xiu Y, Hess DW, Wong CP (2008) UV and thermally stable superhydrophobic coatings from sol-gel processing. J Colloid Interface Sci 326:465–470

    Article  CAS  PubMed  Google Scholar 

  • Xue Z, Cao Y, Liu N (2014) Special wettable materials for oil/water separation. J Mater Chem A 2:2445–2460

    Article  CAS  Google Scholar 

  • Xue Z, Sun Z, Cao Y (2013) Superoleophilic and superhydrophobic biodegradable material with porous structures for oil absorption and oil-water separation. RSC Adv 3:23432–23437

    Article  CAS  Google Scholar 

  • Yadav R, Zachariah S, Balasubramanian K (2016) Thermally stable transparent hydrophobic bio-mimetic dual scale spherulites coating by spray deposition. Adv Sci Eng Med 8:181–187

    Article  CAS  Google Scholar 

  • Yu L, Hao G, Xiao L (2017a) Robust magnetic polystyrene foam for high efficiency and removal oil from water surface. Sep Purif Technol 173:121–128

    Article  CAS  Google Scholar 

  • Yu Z, Yun FF, Gong Z (2017b) A novel reusable superhydrophilic NiO/Ni mesh produced by a facile fabrication method for superior oil/water separation. J Mater Chem A 5:10821–10826

    Article  CAS  Google Scholar 

  • Zhang J, Seeger S (2011) Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Adv Funct Mater 21:4699–4704

    Article  CAS  Google Scholar 

  • Zhou H, Wang H, Niu H, Lin T (2013) Superphobicity/philicity janus fabrics with switchable, spontaneous, directional transport ability to water and oil fluids. Sci Rep 3:2964

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gore, P.M., Purushothaman, A., Naebe, M., Wang, X., Kandasubramanian, B. (2019). Nanotechnology for Oil-Water Separation. In: Prasad, R., Karchiyappan, T. (eds) Advanced Research in Nanosciences for Water Technology. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-02381-2_14

Download citation

Publish with us

Policies and ethics