Skip to main content

Extracellular HSP70, Neuroinflammation and Protection Against Viral Virulence

  • Chapter
  • First Online:

Part of the book series: Heat Shock Proteins ((HESP,volume 16))

Abstract

The major inducible 70 kDa heat shock protein (hsp70) is induced by and supports intracellular replication of viruses belonging to diverse families. Paradoxically, this virus-hsp70 interaction is protective in mouse models of viral neurovirulence, enhancing T cell mediated immune clearance in an interferon β (IFN-β)-dependent manner. Protection reflects early release of hsp70 from viable infected neurons and induction of strong innate immune responses in uninfected brain macrophages, including the induction of IFN-β through Toll-like receptor 4. Potency of the response is inherent in the fact that hsp70 is released at a time when pathogen-associated molecular patterns (PAMPs) are in low abundance, and that the innate response is driven by uninfected cells, free from viral interference. Release of hsp70 from viable cells is primarily exosomal, and infection enhances total exosome release and hsp70 content on the surface of exosomes. Exosome content of hsp70 reflects levels of hsp70 in the infected cell. Findings have broad virological relevance and support a protective role for fever, a potent stimulus for hsp70 induction. While protective in the context of microbial infection, recent findings support potential untoward effects of inappropriate extracellular hsp70 release in non-infectious neuroinflammatory conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ANOVA:

Analysis of variance

CHUK:

Conserved helix-loop-helix ubiquitous ligase

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

DAMP:

Damage-associated molecular pattern

DMEM:

Dulbecco’s Modified Eagle medium

Ed CAM/RB:

Rodent brain adapted Ed-MeV

Ed-MeV:

Edmonston measles virus

ELISA:

Enzyme-linked immunosorbent assay

FCS:

Fetal calf serum

H-2:

Mouse major histocompatibility complex

HSF:

Heat shock factor

hsp70:

70 kDa heat shock protein

IFN:

Interferon

IFNAR:

Type 1 interferon receptor

ILV:

Intralumenal vesicle

IRF3:

Interferon regulatory factor 3

L:

Viral polymerase protein

LDH:

Lactate dehydrogenase

LPS:

Lipopolysaccharide

MEF:

Mouse embryo fibroblasts

MeV:

Measles virus

MHC:

Major histocompatibility complex

MVB:

Multivesicular body

N:

Nucleocapsid protein

N2a-HSP:

Mouse neuroblastoma cells that constitutively express hsp70

N2a-V:

Vector transfected control mouse neuroblastoma cells

NBD:

Nucleotide binding domain

NDV:

Newcastle disease virus

NSE:

Neuron specific enolase

NTAIL :

Carboxyl terminus of the N protein

PAMP:

Pathogen-associated molecular pattern

PBD:

Peptide binding domain (also known as the substrate binding domain, SBD)

RSV:

Respiratory syncytial virus

RT-PCR:

Reverse transcription polymerase chain reaction

SBD:

Substrate binding domain

STAT-1:

Signal transducer and activator of transcription 1

TLR:

Toll-like receptor

TRAM:

Toll-like receptor adapter molecule 2

TRIF:

TIR-domain-containing adapter-inducing interferon-β

VSV:

Vesicular stomatitis virus

References

  • Anand PK (2010) Exosomal membrane molecules are potent immune response modulators. Commun Integr Biol 3:405–408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anand PK, Anand E, Bleck CK, Anes E, Griffiths G (2010) Exosomal Hsp70 induces a pro-inflammatory response to foreign particles including mycobacteria. PLoS One 5:e10136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Awad H, Suntres Z, Heijmans J, Smeak D, Bergdall-Costell V, Cristofi FL, Magro C, Oglesbee M (2008) Intracellular and extracellular expression of the major inducible 70 kDa heat shock protein in experimental ischemia-reperfusion injury of the spinal cord. Exp Neurol 212:275–284

    Article  CAS  PubMed  Google Scholar 

  • Basu S, Binder R, Suto R, Anderson K, Srivastava P (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12(11):1539–1546

    Article  CAS  PubMed  Google Scholar 

  • Beauvillain C, Donnou S, Jarry U, Scotet M, Gascan H, Delneste Y, Guermonprez P, Jeannin P, Couez D (2008) Neonatal and adult microglia cross-present exogenous antigens. Glia 56:69–77

    Article  PubMed  Google Scholar 

  • Bellini W, Rota J, Lowe L, Katz R, Dyken P, Zaki S, Shieh W, Rota P (2005) Subacute sclerosing panencephalitis: more cases of this fatal disease are prevented by measles immunization than was previously recognized. J Infect Dis 192(10):1686–1693

    Article  PubMed  Google Scholar 

  • Bitnum A, Shannon P, Durward A, Rota P, Bellini W, Graham C, Wang E, Ford-Jones E, Cox P, Becker L, Fearon M, Petric M, Tellier R (1999) Measles inclusion body encephalitis caused by the vaccine strain of measles virus. Clin Infect Dis 29(4):855–861

    Article  Google Scholar 

  • Blixenkrone-Moller M, Bernard A, Bencsik A, Sixt N, Diamond L, Logan J, Wild T (1998) Role of CD46 in measles virus infection in CD46 transgenic mice. Virology 249:238–248

    Article  CAS  PubMed  Google Scholar 

  • Bourhis JM, Receveur-Bréchot V, Oglesbee M, Zhang X, Buccellato M, Darbon H, Canard B, Finet S, Longhi S (2005) The intrinsically disordered C-terminal domain of the measles virus nucleoprotein interacts with the C-terminal domain of the phosphoprotein via two distinct sites and remains predominantly unfolded. Protein Sci 14:1975–1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brasier A, Spratt H, Wu Z, Boldogh I, Zhang Y, Garofalo R, Casola A, Pashmi J, Haag A, Luxon B, Kurosky A (2004) Nuclear heat shock response and novel nulear domain 10 reorganization in respiratory syncytial virus-infected A549 cells identified by high-resolution two-dimensional gel electrophoresis. J Virol 21:11461–11476

    Article  CAS  Google Scholar 

  • Brooks G, Butel J, Morse S (1998) Paramyxovirus and rubella virus. In: Butler J, Ransom J, Ryan E (eds) Adelberg’s microbiology. Appleton and Lange, Stanford, pp 507–527

    Google Scholar 

  • Brown G, Rixon H, Steel J, McDonald T, Pitt A, Graham S, Sugrue R (2005) Evidence for an association between heat shock protein 70 and the respiratory syncytial virus polymerase complex within lipid-raft membranes during virus infection. Virology 338:69–80

    Article  CAS  PubMed  Google Scholar 

  • Carsillo T, Carsillo M, Niewiesk S, Vasconcelos D, Oglesbee M (2004) Hyperthermic preconditioning promotes measles virus clearance from brain in a mouse model of persistent infection. Brain Res 1004:73–82

    Article  CAS  PubMed  Google Scholar 

  • Carsillo T, Zhang X, Vasconcelos D, Niewiesk S, Oglesbee M (2006) A single codon in the nucleocapsid protein C terminus contributes to in vitro and in vivo fitness of Edmonston measles virus. J Virol 80(6):2904–2912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carsillo T, Traylor Z, Choi C, Niewiesk S, Oglesbee M (2006a) Hsp72, a host determinant of measles virus neurovirulence. J Virol 80:11031–11039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carsillo T, Zhang X, Vasconcelos D, Niewiesk S, Oglesbee M (2006b) A single codon in the nucleocapsid protein C terminus contributes to in vitro and in vivo fitness of Edmonston measles virus. J Virol 80:2904–2912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carsillo T, Carsillo M, Traylor Z, Rajala-Schultz P, Popovich P, Niewiesk S, Oglesbee M (2009) Major histocompatibility phenotype determines hsp70-dependent protection against measles virus neurovirulence. J Virol 83(11):5544–5555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Lin Y, Liao C, Hsieh S (2000) Modulatory effects of the human heat shock protein 70 on DNA vaccination. J Biomed Sci 7:412–419

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Bawa D, Besshoh S, Gurd JW, Brown IR (2005) Association of heat shock proteins and neuronal membrane components with lipid rafts from the rat brain. J Neurosci Res 81:522–529

    Article  CAS  PubMed  Google Scholar 

  • Couturier M, Buccellato M, Costanzo S, Bourhis J, Shu Y, Nicaise M, Desmadril M, Flaudrops C, Longhi S, Oglesbee M (2010) High affinity binding between Hsp70 and the C-terminal domain of the measles virus nucleoprotein requires an Hsp40 co-chaperone. J Mol Recognit 23:301–315

    CAS  PubMed  Google Scholar 

  • Danzer KM, Ruf WP, Putcha P, Joyner D, Hashimoto T, Glabe C, Hyman BT, McLean PJ (2011) Heat-shock protein 70 modulates toxic extracellular alpha-synuclein oligomers and rescues trans-synaptic toxicity. FASEB J 25:326–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das S, Laxminarayana S, Chandra N, Ravi V, Desai A (2009) Heat shock protein 70 on Neuro2a cells is a putative receptor for Japanese encephalitis virus. Virology 385(1):47–57

    Article  CAS  PubMed  Google Scholar 

  • Daugaard M, Rohde M, Jäättelä M (2007) The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions. FEBS Lett 581:3702–3710

    Article  CAS  PubMed  Google Scholar 

  • De Maio A (2011) Extracellular heat shock proteins, cellular export vesicles, and the Stress Observation System: a form of communication during injury, infection, and cell damage. It is never known how far a controversial finding will go! Dedicated to Ferruccio Ritossa. Cell Stress Chaperones 16:235–249

    Article  CAS  PubMed  Google Scholar 

  • Detje C, Meyer T, Schmidt H, Kruez D, Rose J, Bechmann I, Prinz M, Kalinke U (2009) Local type 1 IFN receptor signaling protects against virus spread within the central nervous system. J Immunol 182:2297–2304

    Article  CAS  PubMed  Google Scholar 

  • Dreux M, Garaigorta U, Boyd B, Decembre E, Chung J, Whitten-Bauer C, Wieland S, Chisari FV (2012) Short-range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity. Cell Host Microbe 12:558–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duib-Jalbut S, Xia J, Rangaviggula H, Fang Y, Lee T (1999) Failure of measles virus to activate nuclear factor-κB in neuronal cells: implications on the immune response to viral infections in the central nervous system. J Immunol 162:4024–4029

    Google Scholar 

  • Finke D, Liebert U (1994) CD4(+) T cells are essential in overcoming experimental measles encephalitis. Immunology 83:184–189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Finke D, Brinckmann U, ter Meulen V, Liebert U (1995) Gamma interferon is a major mediator of antiviral defense in experimental measles virus-induced encephalitis. J Virol 69:5469–5474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman BC, Myers MP, Schumacher R, Morimoto RI (1995) Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1. EMBO J 14:2281–2292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frühbeis C, Fröhlich D, Krämer-Albers EM (2012) Emerging roles of exosomes in neuron-glia communication. Front Physiol 3:119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glaser K, Hagos B, Molestina R (2011) Effects of Toxoplasma gondii genotype and absence of host MAL/Myd88 on the temporal regulation of gene expression in infected microglial cells. Exp Parasitol 129:409–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hecker J, Sundram H, Zou S, Praestgaard A, Bavaria J, Ramchandren S, McGarvey M (2008) Heat shock proteins HSP70 and HSP27 in the cerebrospinal fluid of patients undergoing thoracic aneurysm repair correlate with the probability of postoperative paralysis. Cell Stress Chaperones 13:435–446

    Article  PubMed  PubMed Central  Google Scholar 

  • Henn A, Lund S, Hedtjarn M, Schrattenholz A, Porzgen P, Leist M (2009) The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX 26:83–94

    Article  PubMed  Google Scholar 

  • Hofman F, Hinton D, Baemayr J, Weil M, Merrill J (1991) Lymphokines and immunoregulatory molecules in subacute sclerosing panencephalitis. Clin Immunol Immunopathol 58(3):331–342

    Article  CAS  PubMed  Google Scholar 

  • Joncas J, Robillard L, Boudreault A, Leyritz M, McLaughlin B (1976) Letter: interferon in serum and cebrospinal fluid in subacute sclerosing panencephalitis. Can Med Assoc 115(4):309

    CAS  Google Scholar 

  • Kakimura J, Kitamura Y, Takata K, Umeki M, Suzuki S, Shibagaki K, Taniguchi T, Nomura Y, Gebicke-Haerter P, Smith M, Perry G, Shimohama S (2002) Microglial activation and amyloid-beta clearance induced by exogenous heat-shock proteins. FASEB J 16:601–603

    Article  CAS  PubMed  Google Scholar 

  • Kallfass C, Ackerman A, Lienenklaus S, Weiss S, Heimrich B, Staeheli P (2012) Visualizing production of Beta interferon by astrocytes and microglia in brain of la crosse virus-infected mice. J Virol 86:11223–11230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katayama Y, Hotta H, Nishimura A (1995) Detection of measles virus nucleoprotein mRNA in autopsied brain tissues. J Gen Virol 76(Pt 12):3201–3204

    Article  CAS  PubMed  Google Scholar 

  • Katayama Y, Kosho K, Nichimura A, Tatsuno Y, Homma M, Hotta H (1998) Detection of measles virus mRNA from autopsied human tissues. J Clin Microbiol 36(1):299–301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katz M (1995) Clinical spectrum of measles. Curr Top Microbiol Immunol 191:1–12

    CAS  PubMed  Google Scholar 

  • Kawanokuchi J, Mizuno T, Takeuchi H, Kato H, Wang J, Mitsuma N, Suzumura A (2006) Production of interferon gamma by microglia. Mult Scler 12(5):558–564

    Article  CAS  PubMed  Google Scholar 

  • Kim MY, Shu Y, Carsillo T, Zhang J, Yu L, Peterson C, Longhi S, Girod S, Niewiesk S, Oglesbee M (2013a) Hsp70 and a novel axis of type 1 interferon-dependent antiviral immunity in the measles virus-infected brain. J Virol 87(2):998–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MY, Ma Y, Zhang Y, Li J, Shu Y, Oglesbee M (2013b) hsp70-dependent antiviral immunity against cytopathic neuronal infection by vesicular stomatitis virus. J Virol 87(19):10668–10678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krakowka S (1989) Canine distemper virus infectivity of various blood fractions for central nervous system vasculature. J Neuroimmunol 21:75–80

    Article  CAS  PubMed  Google Scholar 

  • Lahaye X, Vidy A, Fouquet B, Blondel D (2012) Hsp70 protein positively regulates rabies virus infection. J Virol 86(9):4743–4751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lancaster GI, Febbraio MA (2005) Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J Biol Chem 280:23349–23355

    Article  CAS  PubMed  Google Scholar 

  • Letchworth G, Rodriguez L, Del cbarrera J (1999) Vesicular stomatitis. Vet J 157:239–260

    Article  CAS  PubMed  Google Scholar 

  • Lieutaud P, Canard B, Longhi S (2008) MeDor: a metaserver for predicting protein disorder. BMC Genomics 9(Suppl 2):S25

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Hendrickson WA (2007) Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Cell 131:106–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longhi S, Oglesbee M (2010) Structural disorder within the measles virus nucleoprotein and phosphoprotein. Protein Pept Lett 17(8):961–978

    Article  CAS  PubMed  Google Scholar 

  • Louveau A, Smirnov I, Keyes T, Eccles J, Rouhani S, Peske D, Derecki N, Castle D, Mandell J, Lee K, Harris T, Kipnis J (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523(7560):337–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luong M, Zhang Y, Chamberlain T, Zhou T, Wright J, Dower K, Hall JP (2012) Stimulation of TLR4 by recombinant HSP70 requires structural integrity of the HSP70 protein itself. J Inflamm 9:11

    Article  CAS  Google Scholar 

  • Macejak D, Sarnow P (1992) Association of heat shock protein 70 with enterovirus capsid precursor P1 in infected human cells. J Virol 66:1520–1527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madara J, Krewet J, Shah M (2005) Heat shock protein 72 expression allows permissive replication of oncolytic adenovirus dl1520 (ONYX-015) in rat glioblastoma cells. Mol Cancer 4:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marini A, Kozuka M, Lipsky R, Nowak T (1990) 70-kilodalton heat shock protein induction in cerebellar astrocytes and cerebellar granule cells in vitro: comparison with immunocytochemical localization after hyperthermia in vivo. J Neurochem 54:1509–1516

    Article  CAS  PubMed  Google Scholar 

  • Mayer M (2005) Recruitment of Hsp70 chaperones: a crucial part of viral survival strategies. Rev Physiol Biochem Pharmacol 153:1–46

    Article  CAS  PubMed  Google Scholar 

  • Meckes DG, Raab-Traub N (2011) Microvesicles and viral infection. J Virol 85:12844–12854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moehler M, Zeidler M, Schede J, Rommelaere J, Galle P, Cornelis J, Heike M (2003) Oncolytic parvovirus H1 induces release of heat shock protein HSP72 in susceptible human tumor cells but may not affect primary immune cells. Cancer Gene Ther 10:477–480

    Article  CAS  PubMed  Google Scholar 

  • Moore S, Kim MY, Maiolini A, Tipold A, Oglesbee M (2012) Extracellular hsp70 release in canine steroid responsive meningitis-arteritis. Vet Immunol Immunopathol 145(1–2):129–133

    Article  CAS  PubMed  Google Scholar 

  • Morrison-Bogorad M, Zimmerman A, Pardue S (1995) Heat shock 70 messenger RNA levels in human brain: correlation with agonal fever. J Neurochem 64:235–246

    Article  CAS  PubMed  Google Scholar 

  • Munday D, Wu W, Smith N, Fix J, Noton S, Galloux M, Touzelet O, Armstrong S, Dawson J, Aljabr W, Easton A, Rameix-Welti MA, de Oliveira A, Simabuco F, Ventura A, Hughes D, Barr J, Fearns R, Digard P, Eléouët JF, Hiscox J (2015) Interactome analysis of the human respiratory syncytial virus RNA polymerase complex identifies protein chaperones as important cofactors that promote L-protein stability and RNA synthesis. J Virol 89(2):917–930

    Article  PubMed  Google Scholar 

  • Nagy P, Wang R, Pogany J, Hafren A, Makinen K (2011) Emerging picture of host chaperone and cyclophilin roles in RNA virus replication. Virology 411:374–382

    Article  CAS  PubMed  Google Scholar 

  • Neumeister C, Niewiesk S (1998) Recognition of measles virus-infected cells by CD8+ T cells dependent upon the H-2 molecule. J Gen Virol 79:2583–2591

    Article  CAS  PubMed  Google Scholar 

  • Niewiesk S, Brinckmann U, Bankamp B, Sirak S, Liebert U, ter Meulen V (1993) Susceptibility to measles virus-induced encephalitis in mice correlates with impaired antigen presentation to cytotoxic lymphocytes. J Virol 67:75–81

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noessner E, Gastpar R, Milani V, Brandl A, Hutzler P, Kuppner M, Roos M, Kremmer E, Asea A, Calderwood S, Issels R (2002) Tumor derived heat shock protein complexes are cross-presented by human dendritic cells. J Immunol 169(10):5424–5432

    Article  CAS  PubMed  Google Scholar 

  • Nozawa N, Yamauchi Y, Ohtsuka K, Kawaguchi Y, Nishiyama Y (2004) Formation of aggresome-like structures in herpes simplex virus type 2-infected cells and a potential role in virus assembly. Exp Cell Res 299(2):486–497

    Article  CAS  PubMed  Google Scholar 

  • Oglesbee M (2007) Nucleocapsid protein interactions with the major inducible 70 kDa heat shock protein. In: Longhi S (ed) Measles virus nucleoprotein. Nova Science Publishers, Hauppauge, pp 53–98

    Google Scholar 

  • Oglesbee M, Krakowka S (1993) The cellular stress response induces selective intranuclear trafficking and accumulation of morbillivirus major core protein. Lab Investig 68(1):109–117

    CAS  PubMed  Google Scholar 

  • Oglesbee M, Niewiesk S (2011) Measles virus neurovirulence and host immunity. Future Virol 6(1):85–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oglesbee M, Tatalick L, Rice J, Krakowka S (1989) Isolation and characterization of canine distemper virus nucleocapsid variants. J Gen Virol 70:2409–2419

    Article  CAS  PubMed  Google Scholar 

  • Oglesbee M, Ringler S, Krakowka S (1990) Interaction of canine distemper virus nucleocapsid variants with 70 kDa heat shock proteins. J Gen Virol 71:1585–1590

    Article  CAS  PubMed  Google Scholar 

  • Oglesbee M, Kenney H, Kenney T, Krakowka S (1993) Enhanced production of morbillivirus gene-specific RNAs following induction of the cellular stress response in stable persistent infection. Virology 192:556–567

    Article  CAS  PubMed  Google Scholar 

  • Oglesbee M, Liu Z, Kenney H, Brooks C (1996) The highly inducible member of the 70 kDa family of heat shock proteins increases canine distemper virus polymerase activity. J Gen Virol 77:2125–2135

    Article  CAS  PubMed  Google Scholar 

  • Oglesbee M, Pratt M, Carsillo T (2002) Role for heat shock proteins in the immune response to measles virus infection. Viral Immunol 15:399–416

    Article  CAS  PubMed  Google Scholar 

  • Pack C, Kumaraguru U, Suvas S, Rouse B (2005) Heat-shock protein 70 acts as an effective adjuvant in neonatal mice and confers protection against challenge with herpes simplex virus. Vaccine 23:3526–3534

    Article  CAS  PubMed  Google Scholar 

  • Pardue S, Wang S, Miller M, Morrison-Bogorad M (2007) Elevated levels of inducible heat shock 70 proteins in human brain. Neurobiol Aging 28(2):314–324

    Article  CAS  PubMed  Google Scholar 

  • Patterson CE, Daley JK, Rall GF (2002a) Neuronal survival strategies in the face of RNA viral infection. J Infect Dis 186(Suppl 2):S215–S219

    Article  PubMed  Google Scholar 

  • Patterson CE, Lawrence DM, Echols LA, Rall G (2002b) Immune mediated protection from measles virus-induced central nervous system disease is non-cytolytic and γ interferon dependent. J Virol 76:4497–4506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES, Lindenberg JL, de Gruijl TD, Wurdinger T, Middeldorp JM (2010) Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A 107:6328–6333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pien G, Nguyen K, Malmgaard L, Satoskar A, Biron C (2002) A unique mechanism for innate cytokine promotion of T cell responses to viral infections. J Immunol 169:5827–5837

    Article  CAS  PubMed  Google Scholar 

  • Qin H, Wilson C, Lee S, Zhao X, Benveniste E (2005) LPS induces CD40 gene expression through the activation of NF-kappaB and STAT-1alpha in macrophages and microglia. Blood 106:3114–3122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ran R, Zhou G, Lu A, Zhang L, Tang Y, Rigby AC, Sharp FR (2004) Hsp70 mutant proteins modulate additional apoptotic pathways and improve cell survival. Cell Stress Chaperones 9:229–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren X, Xue C, Kong Q, Zhang C, Bi Y, Cao Y (2012) Proteomic analysis of purified Newcastle disease virus particles. Proteome Sci 10:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers C, Fernandes-Alnemri T, Mayes L, Alnemri D, Cingolani G, Alnemri E (2017) Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/apoptotic cell death. Nat Commun 8:14128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozina E, Kaptsova T, Sharova O, Nikolaeva M, Nesterova T (1984) Study of mumps virus invasiveness in monkeys. Acta Virol 28(2):107–113

    CAS  PubMed  Google Scholar 

  • Rudd P, Cattaneo R, von Messling V (2006) Canine distemper virus uses both the anterograde and hematogenous pathway for neuroinvasion. J Virol 80:9361–9370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson RJ, Lim JW, Moritz RL, Mathivanan S (2009) Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics 6:267–283

    Article  CAS  PubMed  Google Scholar 

  • Song H, Moseley P, Lowe S, Ozbun M (2010) Inducible heat shock protein 70 enhances HPV31 viral genome replication and virion production during the differentiation-dependent life cycle in human keratinocytes. Virus Res 147:113–122

    Article  CAS  PubMed  Google Scholar 

  • Steel R, Doherty J, Buzzard K, Clemons N, Hawkins C, Anderson R (2004) Hsp72 inhibits apoptosis upstream of the mitochondria and not through interactions with Apaf-1. J Biol Chem 279(49):51490–51499

    Article  CAS  PubMed  Google Scholar 

  • Stoorvogel W, Kleijmeer MJ, Geuze HJ, Raposo G (2002) The biogenesis and functions of exosomes. Traffic 3:321–330

    Article  CAS  PubMed  Google Scholar 

  • Strong M, Blanchard E, Lin Z, Morris C, Baddoo M, Taylor C, Ware M, Flemington E (2016) A comprehensive next generation sequencing-based virome assessment in brain tissue suggests no major virus-tumor association. Acta Neuropathol Commun 4(1):71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taguwa S, Maringer K, Li X, Bernal-Rubio D, Rauch J, Gestwicki J, Andino R, Fernandez-Sesma A, Frydman J (2015) Defining hsp70 subnetworks in Dengue virus replication reveals key vulnerability in flavivirus infection. Cell 163(5):1108–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanguy Le G, Boehmer P (2002) Activation of the herpes simplex virus type-1 origin binding protein (UL9) by heat shock proteins. J Biol Chem 277:5660–5666

    Article  CAS  Google Scholar 

  • Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579

    Article  CAS  PubMed  Google Scholar 

  • Tischer S, Basila M, Maecker-Kolhoff B, Immenschuh S, Oelke M, Blasczyk R, Eiz-Vesper B (2012) Heat shock protein 70/peptide complexes: potent mediators for the generation of antiviral T cells particularly with regard to low precursor frequencies. J Transl Med 9:175

    Article  CAS  Google Scholar 

  • Toshchakov V, Jones B, Perera P, Thomas K, Cody M, Zhang S, Williams B, Major J, Hamilton T, Fenton M, Vogel S (2002) TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages. Nat Immunol 3:392–398

    Article  CAS  PubMed  Google Scholar 

  • Tytell M, Brown W, Moody D, Challa V (1998) Immunohistochemical assessment of constitutive and inducible heat-shock protein 70 and ubiquitin in human cerebellum and caudate nucleus. Mol Chem Neuropathol 35:97–117

    Article  CAS  PubMed  Google Scholar 

  • Vabulas R, Ahmad-Nejad P, Ghose S, Kirschning C, Issels R, Wagner H (2002) HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277:15107–15112

    Article  CAS  PubMed  Google Scholar 

  • Vasconcelos D, Cai X, Oglesbee M (1998a) Constitutive overexpression of the major inducible 70 kDa heat shock protein mediates large plaque formation by measles virus. J Gen Virol 79:2239–2908

    Article  CAS  PubMed  Google Scholar 

  • Vasconcelos D, Norrby E, Oglesbee M (1998b) The cellular stress response increases measles virus-induced cytopathic effect. J Gen Virol 79:1769–1773

    Article  CAS  PubMed  Google Scholar 

  • von Rüden E-L, Wolf F, Keck M, Gualtieri F, Nowakowska M, Oglesbee M, Potschka H (2018) Genetic modulation of HSPA1A accelerates kindling progression and exerts pro-convulsant effects. Neuroscience 386:108–120

    Article  CAS  Google Scholar 

  • Weidinger G, Czub S, Neumeister C, Harriott P, ter Meulen V, Niewiesk S (2000) Role of CD4(+) and CD8(+) T cells in the prevention of measles virus-induced encephalitis in mice. J Gen Virol 81:2707–2713

    Article  CAS  PubMed  Google Scholar 

  • Wheeler D, Chase M, Senft A, Poynter S, Wong H, Page K (2009) Extracellular Hsp70, an endogenous DAMP, is released by virally infected airway epithelial cells and activates neutrophils via Toll-like receptor (TLR)-4. Respir Res 10:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu YP, Chang CM, Hung CY, Tsai MC, Schuyler S, Wang R (2011) Japanese encephalitis virus co-opts the ER-stress response protein GRP78 for viral infectivity. Virol J 8:128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye J, Chen Z, Zhang B, Miao H, Zohaib A, Xu Q, Chen H, Cao S (2013) Heat shock protein 70 is associated with replicase complex of Japanese encephalitis virus and positively regulates viral genome replication. PLoS One 8:e75188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuyama K, Sun H, Mitsutake S, Igarashi Y (2012) Sphingolipid-modulated exosome secretion promotes clearance of amyloid beta by microglia. J Biol Chem 287:10977–10989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Glendening C, Linke H, Parks C, Brooks C, Udem S, Oglesbee M (2002a) Identification and characterization of a regulatory domain on the carboxyl terminus of the measles virus nucleocapsid protein. J Virol 76(17):8737–8746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Huang L, Zhang J, Moskophidis D, Mivechi N (2002b) Targeted disruption of hsf1 leads to lack of thermotolerance and defines tissue-specific regulation for stress-inducible Hsp molecular chaperones. J Cell Biochem 86(2):376–393

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Bourhis J, Longhi S, Carsillo T, Buccellato M, Morin B, Canard B, Oglesbee M (2005) Hsp72 recognizes a P binding motif in the measles virus N protein C-terminus. Virology 337:162–174

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by funds from the National Institute of Neurological Disorders and Stroke (R01NS31693). We thank Dr. Mamuka Kvaratskhelia (The Ohio State University) for assistance in the proteome analysis of exosomes and Dr. Prosper Boyaka (The Ohio State University) for suggestions in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Oglesbee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oglesbee, M., Kim, M.Y., Shu, Y., Longhi, S. (2019). Extracellular HSP70, Neuroinflammation and Protection Against Viral Virulence. In: Asea, A., Kaur, P. (eds) Chaperokine Activity of Heat Shock Proteins . Heat Shock Proteins, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-030-02254-9_2

Download citation

Publish with us

Policies and ethics