Skip to main content

Modal Ω-Logic: Automata, Neo-Logicism, and Set-Theoretic Realism

  • Chapter
  • First Online:
  • 1354 Accesses

Part of the book series: Philosophical Studies Series ((PSSP,volume 134))

Abstract

This essay examines the philosophical significance of Ω-logic in Zermelo-Fraenkel set theory with choice (ZFC). The dual isomorphism between algebra and coalgebra permits Boolean-valued algebraic models of ZFC to be interpreted as coalgebras. The modal profile of Ω-logical validity can then be countenanced within a coalgebraic logic, and Ω-logical validity can be defined via deterministic automata. I argue that the philosophical significance of the foregoing is two-fold. First, because the epistemic and modal profiles of Ω-logical validity correspond to those of second-order logical consequence, Ω-logical validity is genuinely logical, and thus vindicates a neo-logicist conception of mathematical truth in the set-theoretic multiverse. Second, the foregoing provides a modal-computational account of the interpretation of mathematical vocabulary, adducing in favor of a realist conception of the cumulative hierarchy of sets.

Forthcoming in the ‘Proceedings of the 2016 Meeting of the International Association for Computing and Philosophy’.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For a standard presentation, see Jech (2003). For detailed, historical discussion, see Maddy (1988a).

  2. 2.

    See Koellner (2013), for the presentation, and for further discussion, of the definitions in this and the subsequent paragraph.

  3. 3.

    See Kanamori (2012a: 2.1; 2012b: 4.1), for further discussion.

  4. 4.

    See Kanamori (2008), for further discussion.

  5. 5.

    See Kanamori (2007), for further discussion. Kanamori (op. cit.: 154) notes that Gödel (1931/1986: fn48a) makes a similar appeal to higher-order languages, in his proofs of the incompleteness theorems. The incompleteness theorems are examined in further detail, in Sect. 4.4.2, below.

  6. 6.

    The definitions in the remainder of this subsection follow the presentations in Koellner and Woodin (2010) and Woodin (2010, 2011).

  7. 7.

    The definitions in this section follow the presentation in Bagaria et al. (2006).

  8. 8.

    See Lando (2015), McKinsey (1944) and Rasiowa (1963), for further details.

  9. 9.

    Note that, in cases of Boolean-valued epistemic topological algebras, models of corresponding coalgebras will be topological (cf. Takeuchi 1985 for further discussion).

  10. 10.

    See Henkin et al (op. cit.: 162–163) for the introduction of cylindric algebras, and for the axioms governing the cylindrification operators.

  11. 11.

    Cylindric frames need further to satisfy the following axioms (op. cit.: 254):

    1. p → ◇ip

    2. p → □i ◇ip

    3. ◇i ◇ip → ◇ip

    4. ◇i ◇jp → ◇j ◇ip

    5. d i,i

    6. ◇i(d i,j  ∧p) → □i(d i,j  →p)

    [Translating the diagonal element and cylindric (modal) operator into, respectively, monadic and dyadic predicates and universal quantification: ∀xyz[(Tixy ∧Ei,jy ∧Tixz ∧Ei,jz) →y = z] (op. cit.)] 7. d i,j ⇔  ◇k(d i,k], ∧ d k,j).

  12. 12.

    For an examination of the interaction between topos theory and an S4 modal axiomatization of computable functions, see Awodey et al. (2000).

  13. 13.

    The nature of the indeterminacy in question is examined in Saunders and Wallace (2008), Deutsch (2010), Hawthorne (2010), Wilson (2011), Wallace (2012: 287–289), Lewis (2016: 277–278), and Khudairi (ms). For a thorough examination of approaches to the ontology of quantum mechanics, see Arntzenius (2012: ch. 3).

  14. 14.

    The phrase, ‘mathematical entanglement’, is owing to Koellner (2010: 2).

  15. 15.

    Cf. Dedekend (1888/1963) and Peano (1889/1967). See Wright (1983: 154–169) for a proof sketch of Frege’s theorem; Boolos (1987) for the formal proof thereof; and Parsons (1964) for an incipient conjecture of the theorem’s validity.

  16. 16.

    For any first-order model M, M has a submodel M′ whose domain is at most denumerably infinite, s.t. for all assignments s on, and formulas ϕ(x) in, M′, M,\(s \Vdash \phi \)(x) ⇔ M′,\(s \Vdash \phi \)(x).

  17. 17.

    For an examination of the philosophical significance of modal coalgebraic automata beyond the philosophy of mathematics, see Baltag (2003). Baltag (op. cit.) proffers a colagebraic semantics for dynamic-epistemic logic, where coalgebraic functors are intended to record the informational dynamics of single- and multi-agent systems. For an algebraic characterization of dynamic-epistemic logic, see Kurz and Palmigiano (2013). For further discussion, see Khudairi (ms). The latter proceeds by examining undecidable sentences via the epistemic interpretation of multi-dimensional intensional semantics. See Reinhardt (1974), for a similar epistemic interpretation of set-theoretic languages, in order to examine the reduction of the incompleteness of undecidable sentences on the counterfactual supposition that the language is augmented by stronger axioms of infinity; and Maddy (1988b), for critical discussion. Chihara (2004) argues, as well, that conceptual possibilities can be treated as imaginary situations with regard to the construction of open-sentence tokens, where the latter can then be availed of in order to define nominalistically adequate arithmetic properties.

References

  • Arntzenius, F. 2012. Space, Time, and Stuff. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Awodey, S., L. Birkedal, and D. Scott. 2000. Local Realizability Toposes and a Modal Logic for Computability. Technical Report No. CMU-PHIL-99.

    Google Scholar 

  • Bagaria, J., N. Castells, and P. Larson. 2006. An Ω-logic Primer. Trends in Mathematics: Set Theory. Basel: Birkhäuser Verlag.

    Google Scholar 

  • Baltag, A. 2003. A coalgebraic semantics for epistemic programs. Electronic Notes in Theoretical Computer Science 82: 1.

    Article  Google Scholar 

  • Boolos, G. 1987. The Consistency of Frege’s Foundations of Arithmetic. In On Being and Saying, ed. J.J. Thomson. MIT Press.

    Google Scholar 

  • Chihara, C. 2004. A Structural Account of Mathematics. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Dedekend, R. 1888/1963. Was sind und was sollen die Zahlen? In Essays on the Theory of Numbers. Trans. and ed. W. Beman. New York: Dover.

    Google Scholar 

  • Deutsch, D. 2010. Apart from Universes. In Many Worlds? Everett, Quantum Theory, and Reality, ed. S. Saunders, J. Barrett, A. Kent, and D. Wallace. Oxford: Oxford University Press.

    Google Scholar 

  • Deutsch, D. 2013. Constructor theory. Synthese 190: 4331–4359.

    Article  MathSciNet  Google Scholar 

  • Dummett, M. 1963/1978. The Philosophical Significance of Gödel’s Theorem. In Truth and Other Enigmas, ed. M. Dummett. Cambridge: Harvard University Press.

    Google Scholar 

  • Fine, K. 2005. Our Knowledge of Mathematical Objects. In Oxford Studies in Epistemology, vol. 1, ed. T. Gendler and J. Hawthorne. Oxford: Oxford University Press.

    Google Scholar 

  • Fine, K. 2006. Relatively Unrestricted Quantification. In Absolute Generality, ed. A. Rayo and G. Uzquiano. Oxford: Oxford University Press.

    Google Scholar 

  • Frege, G. 1884/1980. The Foundations of Arithmetic, 2nd ed. Trans. J.L. Austin. Northwestern University Press.

    Google Scholar 

  • Frege, G. 1893/2013. Basic Laws of Arithmetic, vol. I–II. Trans. and ed. P. Ebert, M. Rossberg, C. Wright, and R. Cook. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Gödel, K. 1931/1986. On Formally Undecidable Propositions of Principia Mathematica and Related Systems I. In Collected Works, vol. I, ed. S. Feferman, J. Dawson, S. Kleene, G. Moore, R. Solovay, and J. van Heijenoort. Oxford University Press.

    Google Scholar 

  • Gödel, K. 1946/1990. Remarks before the Princeton Bicentennial Conference on Problems in Mathematics. In Collected Works, vol. II, ed. S. Feferman, J. Dawson, S. Kleene, G. Moore, R. Solovay, and J. van Heijenoort. Oxford University Press.

    Google Scholar 

  • Halbach, V., and A. Visser. 2014. Self-reference in arithmetic I. Review of Symbolic Logic 7: 4.

    MathSciNet  MATH  Google Scholar 

  • Hawthorne, J. 2010. A Metaphysician Looks at the Everett Interpretation. In Many Worlds? Everett, Quantum Theory, and Reality, ed. S. Saunders, J. Barrett, A. Kent, and D. Wallace. Oxford: Oxford University Press.

    Google Scholar 

  • Henkin, L., J.D. Monk, and A. Tarski. 1971. Cylindric Algebras, Part I. Amsterdam: North-Holland.

    MATH  Google Scholar 

  • Jech, T. 2003. Set Theory, 3rd Millennium ed. Berlin/Heidelberg: Springer.

    MATH  Google Scholar 

  • Kanamori, A. 2007. Gödel and set theory. Bulletin of Symbolic Logic 13: 2.

    Article  Google Scholar 

  • Kanamori, A. 2008. Cohen and set theory. Bulletin of Symbolic Logic 14: 3.

    MathSciNet  MATH  Google Scholar 

  • Kanamori, A. 2012a. Large Cardinals with Forcing. In Handbook of the History of Logic: Sets and Extensions in the Twentieth Century, ed. D. Gabbay, A. Kanamori, and J. Woods. Amsterdam: Elsevier.

    Google Scholar 

  • Kanamori, A. 2012b. Set theory from Cantor to Cohen. In Handbook of the History of Logic: Sets and Extensions in the Twentieth Century, ed. D. Gabbay, A. Kanamori, and J. Woods. Amsterdam: Elsevier.

    Google Scholar 

  • Koellner, P. 2010. On strong logics of first and second order. Bulletin of Symbolic Logic 16: 1.

    Article  MathSciNet  Google Scholar 

  • Koellner, P. 2013. Large Cardinals and Determinacy. In Stanford Encyclopedia of Philosophy.

    Google Scholar 

  • Koellner, P., and W.H. Woodin. 2010. Large Cardinals from Determinacy. In Handbook of Set Theory, vol. 3, ed. M. Foreman and A. Kanamori. Dordrecht/Heidelberg: Springer.

    Google Scholar 

  • Kurz, A., and A. Palmigiano. 2013. Epistemic updates on algebras. Logical Methods in Computer Science 9(4): 17.

    MathSciNet  MATH  Google Scholar 

  • Lando, T. 2015. First order S4 and its measure-theoretic semantics. Annals of Pure and Applied Logic 166: 187–218.

    Article  MathSciNet  Google Scholar 

  • Lewis, D. 1979. Attitudes De Dicto and De Se. Philosophical Review 88: 4.

    Article  Google Scholar 

  • Lewis, P. 2016. Quantum Ontology. New York: Oxford University Press.

    Book  Google Scholar 

  • Maddy, P. 1988a. Believing the axioms I. Journal of Symbolic Logic 53: 2.

    Article  MathSciNet  Google Scholar 

  • Maddy, P. 1988b. Believing the axioms II. Journal of Symbolic Logic 53: 3.

    MathSciNet  MATH  Google Scholar 

  • Marcus, G. 2001. The Algebraic Mind: Integrating Connectionism and Cognitive Science. Cambridge: MIT Press.

    Google Scholar 

  • McKinsey, J., and A. Tarski. 1944. The algebra of topology. The Annals of Mathematics, Second Series 45: 1.

    Article  Google Scholar 

  • Peano, G. 1889/1967. The Principles of Arithmetic, Presented by a New Method (Trans. J. van Heijenoort). In J. van Heijenoort (1967).

    Google Scholar 

  • Putnam, H. 1980. Models and reality. Journal of Symbolic Logic 45: 3.

    Article  MathSciNet  Google Scholar 

  • Quine, W.V. 1968. Propositional objects. Crítica 2: 5.

    Google Scholar 

  • Rasiowa, H. 1963. On modal theories. Acta Philosophica Fennica 16: 123–136.

    MathSciNet  MATH  Google Scholar 

  • Reinhardt, W. 1974. Remarks on Reflection Principles, Large Cardinals, and Elementary Embeddings. In Proceedings of Symposia in Pure Mathematics, Vol. 13, Part 2: Axiomatic Set Theory, ed. T. Jech. American Mathematical Society.

    Google Scholar 

  • Reinhardt, W. 1986. Epistemic theories and the interpretation of Gödel’s incompleteness theorems. Journal of Philosophical Logic 15: 4.

    MATH  Google Scholar 

  • Rescorla, M. 2015. The representational foundations of computation. Philosophia Mathematica. https://doi.org/10.1093/philmat/nkv009

    Article  MathSciNet  Google Scholar 

  • Rittberg, C. 2015. How woodin changed his mind: new thoughts on the continuum hypothesis. Archive for History of Exact Sciences 69: 2.

    Article  MathSciNet  Google Scholar 

  • Saunders, S., and D. Wallace. 2008. Branching and uncertainty. British Journal for the Philosophy of Science 59: 293–305.

    Article  MathSciNet  Google Scholar 

  • Shapiro, S. 1991. Foundations Without Foundationalism. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Shapiro, S. 1998. Logical Consequence: Models and Modality. In The Philosophy of Mathematics Today, ed. M. Schirn. Oxford: Oxford University Press.

    Google Scholar 

  • Takeuchi, M. 1985. Topological coalgebras. Journal of Algebra 97: 505–539.

    Article  MathSciNet  Google Scholar 

  • Uzquiano, G. 2015. Varieties of indefinite extensibility. Notre Dame Journal of Formal Logic 58: 1.

    MathSciNet  MATH  Google Scholar 

  • Venema, Y. 2007. Algebras and coalgebras. In Handbook of Modal Logic, ed. P. Blackburn, J. van Benthem, and F. Wolter. Amsterdam: Elsevier.

    Google Scholar 

  • Venema, Y. 2013. Cylindric Modal Logic. In Cylindric-Like Algebras and Algebraic Logic, ed. H. Andráka, M. Ferenczi, and I. Németi. Berlin/Heidelberg: János Bolyai Mathematical Society/Springer.

    Google Scholar 

  • Wallace, D. 2012. The Emergent Multiverse. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Wilson, A. 2011. Macroscopic ontology in everettian quantum mechanics. Philosophical Quarterly 61: 243.

    Article  Google Scholar 

  • Woodin, W.H. 1999. The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal. Berlin/New York, de Gruyter.

    Google Scholar 

  • Woodin, W.H. 2010. Strong Axioms of Infinity and the Search for V. In Proceedings of the International Congress of Mathematicians.

    Google Scholar 

  • Woodin, W.H. 2011. The Realm of the Infinite. In Infinity: New Research Frontiers, ed. M. Heller and W.H. Woodin. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Woodin, W.H. ms. The Ω Conjecture.

    Google Scholar 

  • Wright, C. 1983. Frege’s Conception of Numbers as Objects. Aberdeen: Aberdeen University Press.

    MATH  Google Scholar 

  • Wright, C. 1985. Skolem and the sceptic. Proceedings of the Aristotelian Society, Supplementary Volume 59: 85–138.

    Article  Google Scholar 

  • Wright, C. 2004. Warrant for nothing (and foundations for free)? Proceedings of the Aristotelian Society, Supplementary Volume 78: 1.

    Article  Google Scholar 

  • Wright, C. 2012. Replies, Part IV: Warrant Transmission and Entitlement. In Mind, Meaning and Knowledge, ed. A. Coliva. Oxford: Oxford University Press.

    Google Scholar 

  • Wright, C. 2014. On Epistemic Entitlement II. In Scepticism and Perceptual Justification, ed. D. Dodd and E. Zardini. New York: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khudairi, H. (2019). Modal Ω-Logic: Automata, Neo-Logicism, and Set-Theoretic Realism. In: Berkich, D., d'Alfonso, M. (eds) On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Philosophical Studies Series, vol 134. Springer, Cham. https://doi.org/10.1007/978-3-030-01800-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01800-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01799-6

  • Online ISBN: 978-3-030-01800-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics