Skip to main content

Right for the Right Reason: Training Agnostic Networks

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XVII (IDA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11191))

Included in the following conference series:

Abstract

We consider the problem of a neural network being requested to classify images (or other inputs) without making implicit use of a “protected concept”, that is a concept that should not play any role in the decision of the network. Typically these concepts include information such as gender or race, or other contextual information such as image backgrounds that might be implicitly reflected in unknown correlations with other variables, making it insufficient to simply remove them from the input features. In other words, making accurate predictions is not good enough if those predictions rely on information that should not be used: predictive performance is not the only important metric for learning systems. We apply a method developed in the context of domain adaptation to address this problem of “being right for the right reason”, where we request a classifier to make a decision in a way that is entirely ‘agnostic’ to a given protected concept (e.g. gender, race, background etc.), even if this could be implicitly reflected in other attributes via unknown correlations. After defining the concept of an ‘agnostic model’, we demonstrate how the Domain-Adversarial Neural Network can remove unwanted information from a model using a gradient reversal layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    conva-b denotes a convolutional layer consisting of b filters of size \(a \times a\).

References

  1. Ben-David, S., Blitzer, J., Crammer, K., Pereira, F.:. Analysis of representations for domain adaptation. In: Advances in Neural Information Processing Systems, pp. 137–144 (2007)

    Google Scholar 

  2. Caliskan, A., Bryson, J.J., Narayanan, A.: Semantics derived automatically from language corpora contain human-like biases. Science 356(6334), 183–186 (2017)

    Article  Google Scholar 

  3. Chu, W., Cai, D.: Deep feature based contextual model for object detection. Neurocomputing 275, 1035–1042 (2018)

    Article  Google Scholar 

  4. Cristianini, N.: On the current paradigm in artificial intelligence. AI Communications 27(1), 37–43 (2014)

    MathSciNet  Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 248–255. IEEE (2009)

    Google Scholar 

  6. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. CoRR, arXiv:abs/1311.2524 (2013)

  8. Halevy, A., Norvig, P., Pereira, F.: The unreasonable effectiveness of data. IEEE Intell. Syst. 24(2), 8–12 (2009)

    Article  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015)

  10. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical report, Technical Report 07–49, University of Massachusetts, Amherst (2007)

    Google Scholar 

  11. Jia, S., Lansdall-Welfare, T., Cristianini, N.: Gender classification by deep learning on millions of weakly labelled images. In: 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), pp. 462–467. IEEE (2016)

    Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. Curran Associates Inc. (2012)

    Google Scholar 

  13. Li, J., Wei, Y., Liang, X., Dong, J., Tingfa, X., Feng, J., Yan, S.: Attentive contexts for object detection. IEEE Trans. Multimed. 19(5), 944–954 (2017)

    Article  Google Scholar 

  14. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  15. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you? Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. ACM (2016)

    Google Scholar 

  16. Russakovsky, O., Deng, J., Hao, S., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Eprint Arxiv (2014)

    Google Scholar 

  18. Wulfmeier, M., Bewley, A., Posner, I.: Addressing appearance change in outdoor robotics with adversarial domain adaptation. arXiv preprint arXiv:1703.01461 (2017)

  19. Zeiler, M.D., Fergus, R.: Visualizing and Understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  20. Zhao, J., Wang, T., Yatskar, M., Ordonez, V., Chang, K.-W.: Men also like shopping: Reducing gender bias amplification using corpus-level constraints. arXiv preprint arXiv:1707.09457 (2017)

  21. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: A 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2017)

    Google Scholar 

Download references

Acknowledgements

SJ, TLW and NC are support by the FP7 Ideas: European Research Council Grant 339365 - ThinkBIG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lansdall-Welfare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jia, S., Lansdall-Welfare, T., Cristianini, N. (2018). Right for the Right Reason: Training Agnostic Networks. In: Duivesteijn, W., Siebes, A., Ukkonen, A. (eds) Advances in Intelligent Data Analysis XVII. IDA 2018. Lecture Notes in Computer Science(), vol 11191. Springer, Cham. https://doi.org/10.1007/978-3-030-01768-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01768-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01767-5

  • Online ISBN: 978-3-030-01768-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics