Skip to main content

Nature Inspired Clustering – Use Cases of Krill Herd Algorithm and Flower Pollination Algorithm

  • Chapter
  • First Online:
Interactions Between Computational Intelligence and Mathematics Part 2

Abstract

Nature inspired metaheuristics were found to be applicable in deriving best solutions for several optimization tasks, and clustering represents a typical problem which can be successfully tackled with these methods. This paper investigates certain techniques of cluster analysis based on two recent heuristic algorithms mimicking natural processes: the Krill Herd Algorithm (KHA) and the Flower Pollination Algorithm (FPA). Beyond presenting both procedures and their implementation for clustering, a comparison with regard to quality of result was performed for fifteen data sets mainly drawn from the UCI Machine Learning Repository. As a validation of the clustering solution, the Calinski-Harabasz Index was also applied. Moreover, the performance of the investigated algorithms was assessed via Rand index value, with classic k-means procedure being employed as a point of reference. In conclusion it was established, KHA and FPA can be considered as being effective clustering tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achtert, E., Goldhofer, S., Kriegel, H.P., Schubert, E., Zimek, A.: Evaluation of clusterings – metrics and visual support. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1285–1288 (2012)

    Google Scholar 

  2. Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J.M., Perona, I.: An extensive comparative study of cluster validity indices. Pattern Recognit. 46(1), 243–256 (2013)

    Article  Google Scholar 

  3. Bezdek, J.C., Ehrlich, R., Full, W.: Fcm: the fuzzy c-means clustering algorithm. Comput. Geosci. 10(2), 191–203 (1984)

    Article  Google Scholar 

  4. Calinski, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat.-Theory Methods 3(1), 1–27 (1974)

    Article  MathSciNet  Google Scholar 

  5. Charytanowicz, M., Niewczas, J., Kulczycki, P., Kowalski, P.A., Łukasik, S., Żak, S.: Complete gradient clustering algorithm for features analysis of x-ray images. In: Pietka, E., Kawa, J. (eds.) Information Technologies in Biomedicine. Advances in intelligent and soft computing, vol. 69, pp. 15–24. Springer, Berlin Heidelberg (2010)

    Google Scholar 

  6. Chun-Wei, T., Wei-Cheng, H., Ming-Chao, C.: Recent development of metaheuristics for clustering. In: (Jong Hyuk) Park, J.J., Adeli, H., Park, N., Woungang, I. (eds.) Mobile, Ubiquitous, and Intelligent Computing Volume 274 of Lecture Notes in Electrical Engineering, pp. 629–636. Springer, Heidelberg (2014)

    Google Scholar 

  7. Collan, M., Fedrizzi, M., Kacprzyk, J.: Fuzzy Technology Present Applications and Future Challenges. Springer International Publishing (2016)

    Google Scholar 

  8. Davidson, I., Ravi, S.: Agglomerative hierarchical clustering with constraints: theoretical and empirical results. In: Knowledge Discovery in Databases: PKDD 2005, pp. 59–70. Springer (2005)

    Google Scholar 

  9. Fränti, Pasi, Virmajoki, Olli: Iterative shrinking method for clustering problems. Pattern Recognit. 39(5), 761–775 (2006)

    Article  Google Scholar 

  10. Gagolewski, M., Bartoszuk, M., Cena, A.: Genie: a new, fast, and outlier-resistant hierarchical clustering algorithm. Inf. Sci. 363, 8–23 (2016)

    Article  Google Scholar 

  11. Gandomi, A.H., Alavi, A.H.: Krill herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4831–4845 (2012)

    Article  MathSciNet  Google Scholar 

  12. Kacprzyk, J., Krawczak, M., Szkatua, G.: On bilateral matching between fuzzy sets. Inf. Sci. 402, 244–266 (2017)

    Article  Google Scholar 

  13. Kowalski, P.A., Kusy, M.: Sensitivity analysis for probabilistic neural network structure reduction. IEEE Trans. Neural Netw. Learn. Syst. 29(5), 1919–1932 (2018)

    Article  MathSciNet  Google Scholar 

  14. Kowalski, P.A., Łukasik, S.: Experimental study of selected parameters of the krill herd algorithm. In: Intelligent Systems’2014, pp. 473–485. Springer Science Business Media, Berlin (2015)

    Google Scholar 

  15. Kowalski, P.A., Łukasik, S., Charytanowicz, M., Kulczycki, P.: Clustering based on the krill herd algorithm with selected validity measures. In: Ganzha M., Maciaszek L., Paprzycki M., (eds.) Proceedings of the 2016 Federated Conference on Computer Science and Information Systems of Annals of Computer Science and Information Systems, vol. 8, pp. 79–87. IEEE (2016)

    Google Scholar 

  16. Kowalski, P.A., Łukasik, S., Charytanowicz, M., Kulczycki, P.: Comparison of krill herd algorithm and flower pollination algorithm in clustering task. ESCIM 2016, 31–36 (2016)

    Google Scholar 

  17. Kowalski, P.A., Łukasik, S., Kulczycki, P.: Methods of collective intelligence in exploratory data analysis: a research survey. In: Kowalski P.A., Łukasik S., Kulczycki P. (eds) Proceedings of the International Conference on Computer Networks and Communication Technology (CNCT 2016) of Advances in Computer Science Research, vol. 54, pp. 1–7, Atlantis Press, Xiamen (China) (2016)

    Google Scholar 

  18. Kulczycki, P., Charytanowicz, M., Kowalski, P.A., Łukasik, S.: The complete gradient clustering algorithm: properties in practical applications. J. Appl. Stat. 39(6), 1211–1224 (2012)

    Article  MathSciNet  Google Scholar 

  19. Langfelder, P., Zhang, B., Horvath, S.: Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for r. Bioinformatics 24(5), 719–720 (2008)

    Article  Google Scholar 

  20. Lichman, M.: UCI machine learning repository (2013)

    Google Scholar 

  21. Łukasik, S., Kowalski, P.A.: Study of flower pollination algorithm for continuous optimization. In: Intelligent Systems’2014, pp. 451–459. Springer Science Business Media, Berlin (2015)

    Google Scholar 

  22. Łukasik, S., Kowalski, P.A., Charytanowicz, M., Kulczycki, P.: Fuzzy model identification using kernel-density-based clustering 2, 135–146 (2008). EXIT Warszawa

    Google Scholar 

  23. Łukasik, s., Kowalski, P.A., Charytanowicz, M., Kulczycki, P.: Fuzzy models synthesis with kernel-density-based clustering algorithm. In: Fifth International Conference on Fuzzy Systems and Knowledge Discovery, 2008. FSKD ’08, vol. 3, pp. 449–453 (2008)

    Google Scholar 

  24. Łukasik, S., Kowalski, P.A., Charytanowicz, M., Kulczycki, P.: Clustering using flower pollination algorithm and calinski-harabasz index. In: IEEE Congress on Evolutionary Computation (CEC 2016), pp. 2724–2728, Vancouver (Canada) (2016). Proceedings: paper E-16413

    Google Scholar 

  25. MacQueen, J.: Some methods for classification and analysis of multivariate observations. Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297. University of California 1965/66 (1967)

    Google Scholar 

  26. Müllner, D.: Modern hierarchical, agglomerative clustering algorithms. ArXiv e-prints (2011)

    Google Scholar 

  27. Müllner, D.: fastcluster: Fast hierarchical, agglomerative clustering routines for r and python. J. Stat. Softw. 53(1), 1–18 (2013)

    Google Scholar 

  28. Nowak, P., Romaniuk, M.: Catastrophe bond pricing for the two-factor vasicek interest rate model with automatized fuzzy decision making. Soft Comput. 1–23 (2015)

    Google Scholar 

  29. Rokach, L., Maimon, O.: Clustering methods. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 321–352. Springer, US (2005)

    Google Scholar 

  30. Taher, N., Babak, A.: An efficient hybrid approach based on pso, ACO and k-means for cluster analysis. Appl. Soft Comput. 10(1), 183–197 (2010)

    Google Scholar 

  31. Wang, Gai-Ge: Amir H Gandomi, Amir H Alavi, and Guo-Sheng Hao. Hybrid krill herd algorithm with differential evolution for global numerical optimization. Neural Comput. Appl. 25(2), 297–308 (2014)

    Article  Google Scholar 

  32. Welch, William J.: Algorithmic complexity: three np- hard problems in computational statistics. J. Stat. Comput. Simul. 15(1), 17–25 (1982)

    Article  MathSciNet  Google Scholar 

  33. Yang, M.-S.: A survey of fuzzy clustering. Math. Comput. Model. 18(11), 1–16 (1993)

    Article  MathSciNet  Google Scholar 

  34. Yang, X.-S.: Flower pollination algorithm for global optimization. Lect. Notes Comput. Sci. 7445, 240–249 (2012)

    Google Scholar 

  35. Ying, W., Chung, F.L., Wang, S.: Scaling up synchronization-inspired partitioning clustering. IEEE Trans. Knowl. Data Eng. 26(8), 2045–2057 (2014). Aug

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr A. Kowalski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kowalski, P.A., Łukasik, S., Charytanowicz, M., Kulczycki, P. (2019). Nature Inspired Clustering – Use Cases of Krill Herd Algorithm and Flower Pollination Algorithm. In: Kóczy, L., Medina-Moreno, J., Ramírez-Poussa, E. (eds) Interactions Between Computational Intelligence and Mathematics Part 2. Studies in Computational Intelligence, vol 794. Springer, Cham. https://doi.org/10.1007/978-3-030-01632-6_6

Download citation

Publish with us

Policies and ethics