Skip to main content

Quantum Simulation of Non-Markovian Qubit Dynamics by an All-Optical Setup

  • Conference paper
  • First Online:
  • 287 Accesses

Abstract

We address the experimental implementation of a quantum simulator based on an optical setup. Our device can simulate the dynamical evolution of a qubit undergoing a dephasing process. In particular, we focus on the dynamics arising from the interaction with a classical stochastic field. We encode the state of the qubit in the polarization of a single photon, while the realizations of the stochastic evolution affect its spectral components by a programmable spatial-light-modulator. This setup can simulate in one shot the ensemble-averaged dynamics of the dephasing qubit. We experimentally reconstruct the system density matrix and we show how it is possible to move from a Markovian to a non-Markovian quantum map by changing the spectral parameter of the simulated noise.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R.P. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21, 467 (1982)

    Article  MathSciNet  Google Scholar 

  2. T.H. Johnson, S.R. Clark, D. Jaksch, What is a quantum simulator? EPJ Quant. Technol. 1, 10 (2014)

    Article  Google Scholar 

  3. S. Cialdi, M.A.C. Rossi, C. Benedetti, B. Vacchini, D. Tamascelli, S. Olivares, M.G.A. Paris, All-optical quantum simulator of qubit noisy channels. Appl. Phys. Lett. 110, 081107 (2017)

    Article  ADS  Google Scholar 

  4. M.A.C. Rossi, C. Benedetti, S. Cialdi, D. Tamascelli, S. Olivares, B. Vacchini, M.G.A. Paris, Non-Markovianity by undersampling in quantum optical simulators. Int. J. Quantum Inf. 15, 1740009 (2017)

    Article  MathSciNet  Google Scholar 

  5. C. Benedetti, M.G.A. Paris, S. Maniscalco, Non-Markovianity of colored noisy channels. Phys. Rev. A 89, 012114 (2014)

    Article  ADS  Google Scholar 

  6. M.A.C. Rossi, C. Benedetti, M.G.A. Paris, Engineering decoherence for two-qubit systems interacting with a classical environment. Int. J. Quant. Inf. 12, 1560003 (2014)

    Article  MathSciNet  Google Scholar 

  7. C. Benedetti, M.G.A. Paris, Effective dephasing for a qubit interacting with a transverse classical field. Int. J. Quant. Inf. 12, 1461004 (2014)

    Article  MathSciNet  Google Scholar 

  8. M.A.C. Rossi, M.G.A. Paris, Non-Markovian dynamics of single- and two-qubit systems interacting with Gaussian and non-Gaussian fluctuating transverse environments. J. Chem. Phys. 144, 024113 (2016)

    Article  ADS  Google Scholar 

  9. H.J. Wold, H. Brox, Y.M. Galperin, J. Bergli, Decoherence of a qubit due to either a quantum fluctuator, or classical telegraph noise. Phys. Rev. B 86, 205404 (2012)

    Article  ADS  Google Scholar 

  10. A. Rivas, S.F. Huelga, M.B. Plenio, Entanglement and Non-Markovianity of quantum evolutions. Phys. Rev. Lett. 105, 050403 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  11. S. Lorenzo, F. Plastina, M. Paternostro, Geometrical characterization of non-Markovianity. Phys. Rev. A 88, 020102(R) (2013)

    Article  ADS  Google Scholar 

  12. X.-M. Lu, X. Wang, C.P. Sun, Quantum Fisher information flow and non-Markovian processes of open systems. Phys. Rev. A 82, 042103 (2010)

    Article  ADS  Google Scholar 

  13. H.-P. Breuer, E.M. Laine, J. Piilo, Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  14. Z. He, J. Zou, L. Li, B. Shao, Effective method of calculating the non-Markovianity \(N\) for single-channel open systems. Phys. Rev. A 83, 012108 (2011)

    Google Scholar 

  15. A.W. Chin, S.F. Huelga, M.B. Plenio, Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 109, 233601 (2012)

    Article  ADS  Google Scholar 

  16. R. Vasile, S. Olivares, M.G.A. Paris, S. Maniscalco, Continuous variable quantum key distribution in non-Markovian channels. Phys. Rev. A 83, 042321 (2011)

    Article  ADS  Google Scholar 

  17. S.F. Huelga, A. Rivas, M.B. Plenio, Non-Markovianity-assisted steady state entanglement. Phys. Rev. Lett. 108, 160402 (2012)

    Article  ADS  Google Scholar 

  18. A.M. Weiner, Femtosecond pulse shaping using spatial light modulators. Rev. of Sci. Instrum. 71, 1929 (2000)

    Article  ADS  Google Scholar 

  19. D.F.V. James, P.G. Kwiat, W.J. Munro, A.G. White, Measurement of qubits. Phys. Rev. A 64, 052312 (2001)

    Article  ADS  Google Scholar 

  20. K. Banaszek, G.M. D’Ariano, M.G.A. Paris, M.F. Sacchi, Maximum-likelihood estimation of the density matrix. Phys. Rev. A 61, 010304(R) (1999)

    Article  Google Scholar 

  21. B. Bylicka, D. Chruściński, S. Maniscalco, Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective. Sci. Rep. 4, 5720 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Benedetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benedetti, C. et al. (2018). Quantum Simulation of Non-Markovian Qubit Dynamics by an All-Optical Setup. In: Bortignon, P., Lodato, G., Meroni, E., Paris, M., Perini, L., Vicini, A. (eds) Toward a Science Campus in Milan. CDIP 2017. Springer, Cham. https://doi.org/10.1007/978-3-030-01629-6_4

Download citation

Publish with us

Policies and ethics