Skip to main content

Modeling Spatiotemporal Mismatch for Aerosol Profiles

  • Conference paper
  • First Online:
Quantitative Methods in Environmental and Climate Research

Abstract

The horizontal smoothing impact on the uncertainty term between the satellite and the ground measurement of the aerosol layers is investigated. Nine different horizontal averaging schemes for the CALIPSO aerosol profiles are used in order to investigate the influence of horizontal smoothing of CALIPSO data when compared against the EARLINET data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alados-Arboledas L, Muller D, Guerrero-Rascado JL, Navas-Guzman F, Perez-Ramirez D, Olmo FJ (2011) Optical and microphysical properties of fresh biomass burning aerosol retrieved by Raman LIDAR, and star-and sun-photometry. Geophys Res Lett 38. https://doi.org/10.1029/2010GL045999

    Article  Google Scholar 

  2. Anderson T, Charlson R, Winker D, Ogren J, Holmén K (2003) Mesoscale variations of tropospheric. Aerosols J Atmos Sci 60:119–136. https://doi.org/10.1175/1520-0469(2003)060<0119:MVOTA>2.0.CO;2

    Article  Google Scholar 

  3. Fassò A, Ignaccolo R, Madonna F, Demoz B, Franco-Villoria M ( 2014). Statistical modelling of collocation uncertainty in atmospheric thermodynamic profiles. Atmos Meas Tech 7:1803–1816

    Article  Google Scholar 

  4. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning MR, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, New York, pp 131–217

    Google Scholar 

  5. Guerrero-Rascado JL, Ruiz B, Alados Arboledas L (2008). Multi-spectral Lidar characterization of the vertical structure of Saharan dust aerosol over southern Spain. Atmos Environ 42:2668–2681. https://doi.org/10.1016/j.atmosenv.2007.12.062

    Article  Google Scholar 

  6. Huang J, Hsu NC, Tsay SC, Liu Z, Jeong MJ, Hansell RA, Lee J (2011) Evaluations of cirrus contamination and screening in ground aerosol observations using collocated lidar systems. J Geophys Res 117:D15204. https://doi.org/10.1029/2012JD017757

    Google Scholar 

  7. Huang J et al (2012) Susceptibility of aerosol optical thickness retrievals to thin cirrus contamination during the BASE-ASIA campaign. J Geophys Res 116:D08214

    Google Scholar 

  8. Huang J et al (2013) Use of spaceborne lidar for the evaluation of thin cirrus contamination and screening in the Aqua MODIS collection 5 aerosol products. J Geophys Res Atmos 118:6444–6453. https://doi.org/10.1002/jgrd.50504

    Article  Google Scholar 

  9. Iarlori M, Madonna F, Rizi V, Trickl T, Amodeo A (2015) Effective resolution concepts for lidar observations. Atmos Meas Tech 8:5157–5176. https://doi.org/10.5194/amt-8-5157-2015

    Article  Google Scholar 

  10. Ignaccolo R, Franco-Villoria M, Fassò A (2015) Modelling collocation uncertainty of 3D atmospheric profiles. Stoch Env Res Risk Assess 29(2):417–429

    Article  Google Scholar 

  11. Kittaka C, Winker DM, Vaughan MA, Omar A, Remer LA (2011) Intercomparison of column aerosol optical depths from CALIPSO and MODIS-Aqua. Atmos Meas Tech 4:131–141. https://doi.org/10.5194/amt-4-131-2011

    Article  Google Scholar 

  12. Mona L, Pappalardo G, Amodeo A, D’Amico G, Madonna F, Boselli A, Giunta A, Russo F, Cuomo V (2009) One year of CNR-IMAA multi-wavelength Raman lidar measurements in coincidence with CALIPSO overpasses: level 1 products com-parison. Atmos Chem Phys 9:7213–7228. https://doi.org/10.5194/acp-9-7213-2009

    Article  Google Scholar 

  13. Omar A, Winker D, Kittaka C, Vaughan M, Liu Z, Hu YX, Trepte C, Rogers R, Ferrare R, Lee K, Kuehn R, Hostetler, C (2009) The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J Atmos Ocean Tech 26:1994–2014. https://doi.org/10.1175/2009jtecha1231.1

    Article  Google Scholar 

  14. Papagiannopoulos N, Mona L, Alados-Arboledas L, Amiridis V, Baars H, Binietoglou I, Bortoli D, D’Amico G, Giunta A, Guerrero-Rascado JL, Schwarz A, Pereira S, Spinelli N, Wandinger U, Wang X, Pappalardo G (2016) CALIPSO climatological products: evaluation and suggestions from EARLINET. Atmos Chem Phys 16:2341–2357. https://doi.org/10.5194/acp-16-2341-2016

    Article  Google Scholar 

  15. Pappalardo G et al (2010) EARLINET correlative measurements for CALIPSO: first intercomparison results. J Geophys Res 115:D00H19. https://doi.org/10.1029/2009JD012147

  16. Pappalardo G, Amodeo A, Apituley A, Comeron A, Freuden-thaler V, Linné H, Ansmann A, Bösenberg J, D’Amico G, Mattis I, Mona L, Wandinger, U, Amiridis, V, Alados-Arboledas L, Nicolae D, Wiegner M (2014) EARLINET: to-wards an advanced sustainable European aerosol lidar network. Atmos Meas Tech 7:2389–2409. https://doi.org/10.5194/amt-7-2389-2014

    Article  Google Scholar 

  17. Verhoelst T, Granville J, Hendrick F, Köhler U, Lerot C, Pommereau J-P, Redondas A, Van Roozendael M, Lambert J-C (2015) Metrology of ground-based satellite validation: co-location mismatch and smoothing issues of total ozone comparisons. Atmos Meas Tech 8:5039–5062. https://doi.org/10.5194/amt-8-5039-2015

    Article  Google Scholar 

  18. Winker DM, Hunt WH, McGill MJ (2007) Initial performance assessment of CALIOP. Geophys Res Lett 34:L19803. https://doi.org/10.1029/2007GL030135

    Article  Google Scholar 

  19. Winker DM, Vaughan MA, Omar AH, Hu Y, Powell KA, Liu Z, Hunt WH, Young SA (2009) Overview of the CALIPSO mission and CALIOP data processing algorithms. J Atmos Oceanic Technol 26:2310–2323

    Article  Google Scholar 

  20. Winker DM, Pelon J, Coakley Jr, JA, Ackerman SA, Charlson RJ, Colarco PR, Flamant P, Fu Q, Hoff R, Kittaka C, Kubar TL, LeTreut H, McCormick MP, Megie G, Poole L, Powell K, Trepte C, Vaughan MA, Wielicki BA (2010) The CALIPSO mission: a global 3D view of aerosols and clouds. Bull Am Meteor Soc 91:1211–1229. https://doi.org/10.1175/2010BAMS3009.1,2010

    Article  Google Scholar 

  21. Winker DM, Tackett JL, Getzewich BJ, Liu Z, Vaughan MA, Rogers RR (2013) The global 3-D distribution of tropospheric aerosols as characterized by CALIOP. Atmos Chem Phys 13:3345–3361. https://doi.org/10.5194/acp-13-3345-2013

    Article  Google Scholar 

  22. Young SA (1995) Analysis of lidar backscatter profiles in optically thin clouds Appl Optics 34:7019–7031. https://doi.org/10.1364/AO.34.007019

    Article  Google Scholar 

  23. Young SA, Vaughan MA (2009) The retrieval of profiles of particulate extinction from Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data: algorithm description. J Atmos Ocean Tech 26:1105–1119. https://doi.org/10.1175/2008JTECHA1221.1

    Article  Google Scholar 

  24. Young SA, Vaughan MA, Kuehn RE, Winker DM (2013) The retrieval of profiles of particulate extinction from CloudAerosol Lidar and infrared pathfinder observations (CALIPSO) data: uncertainty and error sensitivity analyses. J Atmos Ocean Tech 30:395–428

    Article  Google Scholar 

Download references

Acknowledgements

This research is partially funded by GAIA-CLIM, the project funded from the European Union’s Horizon 2020 research and innovation program under grant agreement No 640276.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilia Negri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Negri, I., Fassò, A., Mona, L., Papagiannopoulos, N., Madonna, F. (2018). Modeling Spatiotemporal Mismatch for Aerosol Profiles. In: Cameletti, M., Finazzi, F. (eds) Quantitative Methods in Environmental and Climate Research. Springer, Cham. https://doi.org/10.1007/978-3-030-01584-8_4

Download citation

Publish with us

Policies and ethics