Skip to main content

Effect of CO2-Oil Contact Time on the Swelling Factor and Viscosity of Paraffinic Oil at Reservoir Temperature

  • Conference paper
  • First Online:
Advances in Petroleum Engineering and Petroleum Geochemistry (CAJG 2018)

Abstract

The objective of this experimental study is to investigate the effect of CO2-oil contact time to oil swelling factor and viscosity. A sample from the central Sumatra basin was utilized in this study, which is categorized into paraffinic oil. The experiment condition follows the reservoir condition, which has a low fracture pressure. Thus, miscible injection scheme is impossible to apply. Therefore, the role of CO2 in reducing oil viscosity and oil swelling is emphasized. The experiments were performed under reservoir temperature by using PVT cell, syringe pump, and HPHT Rheometer. The result from the experiments clearly indicates that oil swelling and viscosity reduction mechanisms are quite effective during 24 h of CO2 injection. Optimum condition is obtained for the sample with 10 h of CO2-oil contact-time, where the swelling factor and viscosity reduction still show significant values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bagci, S., Tuzunoglu, E.: 3D model studies of the immiscible CO, process using horizontal wells for heavy oil recovery. In: Annual Technical Meeting. Petroleum Society of Canada, Jan 1998

    Google Scholar 

  2. Hepple, R.P., Benson, S.M.: Geologic storage of carbon dioxide as a climate change mitigation strategy: performance requirements and the implications of surface seepage. Environ. Geol. 47(4), 576–585 (2005)

    Article  Google Scholar 

  3. Al-Abri, A., Amin, R.: Phase behaviour, fluid properties and recovery efficiency of immiscible and miscible condensate displacements by SCCO2 injection: experimental investigation. Transp. Porous Media 85(3), 743–756 (2010)

    Article  Google Scholar 

  4. Li, H., Zheng, S., Yang, D.T.: Enhanced swelling effect and viscosity reduction of solvent (s)/CO2/heavy-oil systems. SPE J. 18(04), 695–707 (2013)

    Article  Google Scholar 

  5. Or, C., Sasaki, K., Sugai, Y., Nakano, M., Imai, M.: Swelling and viscosity reduction of heavy oil by CO2-gas foaming in immiscible condition. SPE Reservoir Eval. Eng. 19(02), 294–304 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adi Novriansyah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abdurrahman, M. et al. (2019). Effect of CO2-Oil Contact Time on the Swelling Factor and Viscosity of Paraffinic Oil at Reservoir Temperature. In: Banerjee, S., Barati, R., Patil, S. (eds) Advances in Petroleum Engineering and Petroleum Geochemistry. CAJG 2018. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-01578-7_13

Download citation

Publish with us

Policies and ethics