Skip to main content

Fluorescence Lifetime Distribution Brings Out Mechanisms Involving Biomolecules While Quantifying Population Heterogeneity

  • Chapter
  • First Online:

Part of the book series: Reviews in Fluorescence ((RFLU))

Abstract

Flexibility and motional dynamics in biological macromolecules give rise to conformational and structural heterogeneity. Quantification of the level of heterogeneity is essential for providing deeper understanding of molecular mechanisms in biology. Fluorescence lifetime distribution generated by the Maximum Entropy Method (MEM) provides an unbiased estimate of structural heterogeneity. This chapter discusses several examples where MEM-generated lifetime distribution brings out site-specific conformational and structural heterogeneity in proteins and membranes. Use of the information on heterogeneity in revealing molecular mechanisms is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Henzler-Wildman KA, Lei M, Thai V, Kerns SJ, Karplus M, Kern D (2007) A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450:913–916

    Article  CAS  Google Scholar 

  2. Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG (1995) Funnels, pathways and the energy landscape of protein folding. Proteins 21:167–195

    Article  CAS  Google Scholar 

  3. Lakowicz JR (2006) Principles of fluorescence spectroscopy., 3rd edn. Springer, New York

    Book  Google Scholar 

  4. Ishima R, Torchia D (2000) Protein dynamics from NMR. Nat Struct Mol Biol 76:145–152

    Google Scholar 

  5. Uversky VN (2013) A decade and a half of protein intrinsic disorder: biology waits for physics. Protein Sci 22:693–724

    Article  CAS  Google Scholar 

  6. Navon A, Ittah V, Landsman P, Scheraga HA, Haas E (2001) Distributions of intramolecular distances in the reduced and denatured states of bovine pancreatic ribonuclease A. Biochemistry 40:105–118

    Article  CAS  Google Scholar 

  7. Alcala JR, Gratton E, Prendergast FG (1987) Fluorescence lifetime distribution in proteins. Biophys J 51:597–604

    Article  CAS  Google Scholar 

  8. Brochon JC (1994) Maximum entropy method of data analysis in time-resolved spectroscopy. Methods Enzymol 240:262–311

    Article  CAS  Google Scholar 

  9. Swaminathan R, Krishnamoorthy G, Periasamy N (1994) Similarity of fluorescence lifetime distributions for single tryptophan proteins in the random coil state. Biophys J 67:2013–2023

    Article  CAS  Google Scholar 

  10. Swaminathan R, Periasamy N (1996) Analysis of fluorescence decay by maximum entropy method: influence of noise and analysis parameters on the width of the distribution of lifetimes. Proc Indian Acad Sci.(Chem. Sci.) 108:39–49

    CAS  Google Scholar 

  11. O’Connor D (1984) Time-correlated single photon counting. Elsevier, London

    Google Scholar 

  12. Krishnamoorthy G, Ira (2001) Fluorescence lifetime distribution in characterizing membrane microheterogeneity. J Fluoresc 11:247–253

    Article  Google Scholar 

  13. Krishnamoorthy G (2012) Motional dynamics in proteins and nucleic acids control their function: revelation by time-domain fluorescence. Curr Sci 102:266–276

    CAS  Google Scholar 

  14. Swaminathan R, Nath U, Udgaonkar J, Periasamy N, Krishnamoorthy G (1996) Motional dynamics of a buried tryptophan reveals the presence of partially structured forms during denaturation of Barstar. Biochemistry 35:9150–9157

    Article  CAS  Google Scholar 

  15. Lakshmikanth GS, Sridevi K, Krishnamoorthy G, Udgaonkar JB (2011) Structure is lost incrementally during the unfolding of barstar. Nat Struct Biol 8:799–804

    Article  Google Scholar 

  16. Tanford C (1970) Protein denaturation. Adv Protein Chem 24:1–95

    Article  CAS  Google Scholar 

  17. Jackson SE, Fersht AR (1991) Folding of chymotrypsin inhibitor 2. Evidence for a two-state transition. Biochemistry 30:10428–10435

    Article  CAS  Google Scholar 

  18. Plaxco KW, Simons KT, Ruczinski I, Baker D (2000) Topology, stability, sequence, and length: defining the determinants of two-state protein folding kinetics. Biochemistry 39:11177–11183

    Article  CAS  Google Scholar 

  19. Finkelstein AV, Shakhnovich EI (1989) Theory of cooperative transitions in protein molecules. II Phase diagram for a protein molecule in solution. Biopolymers 28:1681–1694

    Article  CAS  Google Scholar 

  20. Finkelstein AV, Ptitsyn OB (2002) Protein Physics. Academic, Cambridge

    Google Scholar 

  21. Abkevich VI, Gutin AM, Shakhnovich EI (1994) Specific nucleus as the transition state for protein folding: evidence from the lattice model. Biochemistry 33:10026–10036

    Article  CAS  Google Scholar 

  22. Jha SK, Dhar D, Krishnamoorthy G, Udgaonkar JB (2009) Continuous dissolution of structure during the unfolding of a small protein. Proc Natl Acad Sci U S A 106:11113–11118

    Article  CAS  Google Scholar 

  23. Kishore M, Krishnamoorthy G, Udgaonkar JB (2013) Critical evaluation of the two-state model describing the equilibrium unfolding of the P13K SH3 domain by time-resolved fluorescence resonance energy transfer. Biochemistry 52:9482–9496

    Article  CAS  Google Scholar 

  24. Minton AP (2001) The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem 276:10577–10580

    Article  CAS  Google Scholar 

  25. Mondal S, Kallianpur MV, Udgaonkar JB, Krishnamoorthy G (2016) Molecular crowding causes narrowing of population heterogeneity and restricts internal dynamics in a protein. Methods Appl Fluoresc 4:014003

    Article  Google Scholar 

  26. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodie. Proc Natl Acad Sci U S A 95:6469–6473

    Article  CAS  Google Scholar 

  27. Uversky VN, Li J, Souillac P, Millett IS, Doniach S, Jakes R, Goedert M, Fink AL (2002) Biophysical properties of the synucleins and their propensities to fibrillate: inhibition of alpha-synuclein assembly by beta- and gamma-synucleins. J Biol Chem 277:11970–11978

    Article  CAS  Google Scholar 

  28. Conway KA, Harper JD, Lansbury PT Jr (2000) Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. Biochemistry 39:2552–25563

    Article  CAS  Google Scholar 

  29. Giasson BI, Murray IV, Trojanowski JQ, Lee VM (2001) A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. J Biol Chem 276:2380–2386

    Article  CAS  Google Scholar 

  30. Sahay S, Krishnamoorthy G, Maji SK (2016) Site-specific structural dynamics of α-Synuclein revealed by time-resolved fluorescenc spectroscopy: a review. Methods Appl Fluoresc 4:042002

    Article  Google Scholar 

  31. Sahay S, Anoop A, Krishnamoorthy G, Maji SK (2014) Site-specific fluorescence dynamics of α-Synuclein fibrils using time-resolved fluorescence studies: effect of familial Parkinson’s disease-associated mutations. Biochemistry 53:807–809

    Article  CAS  Google Scholar 

  32. Sahay S, Ghosh D, Dwivedi S, Anoop A, Kombrabail M, Mohite GM, Krishnamoorthy G, Maji SK (2015) Familial Parkinson's disease associated mutations alter the site-specific microenvironment and dynamics of α-Synuclein. J Biol Chem 290:7804–7822

    Article  CAS  Google Scholar 

  33. Veatch WR, Fossel ET, Blout ER (1974) The conformation of gramicidin A. Biochemistry 13:5249–5256

    Article  CAS  Google Scholar 

  34. Zein M, Winter R (2000) Effect of temperature, pressure and lipid acyl chain length on the structure and phase behaviour of phospholipidgramicidin bilayers. Phys Chem Chem Phys 2:4545–4551

    Article  CAS  Google Scholar 

  35. Wimley WC, White SH (1996) Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol 3:842–848

    Article  CAS  Google Scholar 

  36. Rawat SS, Kelkar DA, Chattopadhyay A (2004) Monitoring gramicidin conformations in membranes: a fluorescence approach. Biophys J 87:831–843

    Article  CAS  Google Scholar 

  37. Haldar S, Kombrabail M, Krishnamoorthy G, Chattopadhyay A (2010) Monitoring membrane protein conformational heterogeneity by fluorescence lifetime distribution analysis using the maximum entropy method. J Fluoresc 20:407–413

    Article  CAS  Google Scholar 

  38. Haldar S, Chaudhuri A, Gu H, Koeppe R, Kombrabail M, Krishnamoorthy G, Chattopadhyay A (2012) Membrane organization and dynamics of ‘inner pair’ and ‘outer pair’ tryptophan residue in gramicidin channels. J Phys Chem B 116:11056–11064

    Article  CAS  Google Scholar 

  39. Gu H, Lum K, Kim JH, Greathouse DV, Andersen OS, Koeppe RE (2011) The membrane Interface dictates different anchor roles for “inner pair” and “outer pair” tryptophan indole rings in gramicidin a channels. Biochemistry 50:4855–4866

    Article  CAS  Google Scholar 

  40. Ira KG (1998) Probing the dynamics of planar supported membranes by Nile red fluorescence lifetime distribution. Biochim Biophys Acta 1414:255–225

    Article  CAS  Google Scholar 

  41. Mukherjee S, Kombrabail M, Krishnamoorthy G, Chattopadhyay A (2007) Dynamics and heterogeneity of bovine hippocampal membranes: role of cholesterol and proteins. Biochim Biophys Acta 1768:2130–2144

    Article  CAS  Google Scholar 

  42. Sharma P, Varma R, Sarasij RC, Ira GK, Krishnamoorthy G, Rao M, Mayor S (2004) Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116:577–589

    Article  CAS  Google Scholar 

  43. Haldar S, Kombrabail M, Krishnamoorthy G, Chattopadhyay A (2012) Depth-dependent heterogeneity in membranes by fluorescence lifetime distribution analysis. J Phys Chem Lett 3:2676–2681

    Article  CAS  Google Scholar 

  44. De Rosa M, Gambacorta A, Nicolaus B, Chappe B, Albrecht P (1983) Isoprenoid ethers: backbone of complex lipids of the Archaebacterium Sulfolobus solfataricus. Biochim Biophys Acta, Lipids Lipid Metab 753:249–256

    Article  Google Scholar 

  45. Chakraborty H, Haldar S, Lee-Gau Chong P, Kombrabail M, Krishnamoorthy G, Chattopadhyay A (2015) Depth-dependent organization and dynamics of archaeal and eukaryotic membranes: development of membrane anisotropy gradient with natural evolution. Langmuir 31:11591–11597

    Article  CAS  Google Scholar 

  46. Hughson FM (1997) Enveloped viruses: a common mode of membrane fusion? Curr Biol 7:565–569

    Article  Google Scholar 

  47. Skehel JJ, Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69:531–569

    Article  CAS  Google Scholar 

  48. Gething MJ, Doms RW, York D, White J (1986) Studies on the mechanism of membrane fusion: site-specific mutagenesis of the hemagglutinin of influenza virus. J Cell Biol 102:11–23

    Article  CAS  Google Scholar 

  49. Chakraborty H, Lentz BR, Kombrabail M, Krishnamoorthy G, Chattopadhyay A (2017) Depth-dependent membrane ordering by hemagglutinin fusion peptide promotes fusion. J Phys Chem B 121:1640–1648

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Profs. Jayant Udgaonkar, Deepak Dhar, Amitabha Chattopadhyay, N. Periasamy, and Samir Maji and Drs. G.S. Lakshmikanth, K. Sridevi, Megha Kishore, Santosh Jha, Samsuzzoha Mondal, Shruti Sahay, Sourav Haldar, Soumi Mukherjee and Hirak Chakravorty for their collaboration in the research work described here. Prof. N. Periasamy is thanked for providing the software used in the analysis of time-domain fluorescence data, and for his advice in using it effectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Krishnamoorthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krishnamoorthy, G. (2018). Fluorescence Lifetime Distribution Brings Out Mechanisms Involving Biomolecules While Quantifying Population Heterogeneity. In: Geddes, C. (eds) Reviews in Fluorescence 2017. Reviews in Fluorescence. Springer, Cham. https://doi.org/10.1007/978-3-030-01569-5_4

Download citation

Publish with us

Policies and ethics