Skip to main content

Global Registration of Point Clouds for Mapping

  • Conference paper
  • First Online:
  • 1357 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 867))

Abstract

We present a robust Global Registration technique focused on environment survey applications using laser range-finders. Our approach works under the assumption that places can be recognized by analyzing the projection of the observed points along the gravity direction. Candidate 3D matches are estimated by aligning the 2D projective representations of the acquired scans, and benefiting from the corresponding dimensional reduction. Each single candidate match is then validated exploiting the implicit empty space information associated to scans. The global reconstruction problem is modeled as a directed graph, where scan poses (nodes) are connected through matches (edges). This is exploited to compute local matches (instead of global ones) between pairs of scans that are in the same reference frame. As a consequence, both performance and recall ratio increase w.r.t. using only global matches. Additionally, the graph structure allows formulating a sparse global optimization problem that optimizes scan poses, considering simultaneously all accepted matches. Our approach is being used in production systems and has been successfully evaluated on several real datasets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  2. Bosse, M., Zlot, R.: Place recognition using keypoint voting in large 3d lidar datasets. In: ICRA (2013)

    Google Scholar 

  3. Calonder, M., Lepetit, V., Ozuysal, M., Trzcinski, T., Strecha, C., Fua, P.: Brief: computing a local binary descriptor very fast. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1281–1298 (2012)

    Article  Google Scholar 

  4. Collier, J., Se, S., Kotamraju, V., Jasiobedzki, P.: Real-time lidar-based place recognition using distinctive shape descriptors. In: SPIE Unmanned Systems Technology (2012)

    Google Scholar 

  5. Cummins, M., Newman, P.: Appearance-only slam at large scale with fab-map 2.0. Int. J. Robot. Res. 30(9), 1100–1123 (2011)

    Article  Google Scholar 

  6. Filliat, D.: A visual bag of words method for interactive qualitative localization and mapping. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 3921–3926, April 2007

    Google Scholar 

  7. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: CVPR (2012)

    Google Scholar 

  8. Ho, K.L., Newman, P.: Detecting loop closure with scene sequences. Int. J. Comput. Vis. 74(3), 261–286 (2007)

    Article  Google Scholar 

  9. Košecká, J., Li, F., Yang, X.: Global localization and relative positioning based on scale-invariant keypoints. Robot. Auton. Syst. 52(1), 27–38 (2005)

    Article  Google Scholar 

  10. Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: G2o: a general framework for graph optimization. In: ICRA (2011)

    Google Scholar 

  11. Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh saliency. ACM Trans. Graph. 24(3), 659–666 (2005)

    Article  Google Scholar 

  12. Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV (1999)

    Google Scholar 

  13. Lynen, S., Bosse, M., Furgale, P., Siegwart, R.: Placeless place-recognition. In: 3DV (2014)

    Google Scholar 

  14. Magnusson, M., Andreasson, H., Nüchter, A., Lilienthal, A.J.: Automatic appearance-based loop detection from three-dimensional laser data using the normal distributions transform. J. Field Robot. 26(11–12), 892–914 (2009)

    Article  Google Scholar 

  15. Muhammad, N., Lacroix, S.: Loop closure detection using small-sized signatures from 3d lidar data. In: 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, pp. 333–338, November 2011

    Google Scholar 

  16. Newman, P., Sibley, G., Smith, M., Cummins, M., Harrison, A., Mei, C., Posner, I., Shade, R., Schroeter, D., Murphy, L., Churchill, W., Cole, D., Reid, I.: Navigating, recognizing and describing urban spaces with vision and lasers. Int. J. Rob. Res. 28(11–12), 1406–1433 (2009)

    Article  Google Scholar 

  17. Paul, R., Newman, P.: Fab-map 3d: Topological mapping with spatial and visual appearance. In: ICRA (2010)

    Google Scholar 

  18. Rusu, R.B., Cousins, S.: 3d is here: Point cloud library (PCL). In: ICRA (2011)

    Google Scholar 

  19. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: ICRA (2009)

    Google Scholar 

  20. Sánchez-Belenguer, C., Vendrell-Vidal, E.: An efficient technique to recompose archaeological artifacts from fragments. In: VSMM (2014)

    Google Scholar 

  21. Schindler, G., Brown, M., Szeliski, R.: City-scale location recognition. In: CVPR, pp. 1–7 (2007)

    Google Scholar 

  22. Shi, J., Tomasi, C.: Good features to track. In: CVPR (1994)

    Google Scholar 

  23. Sipiran, I., Bustos, B.: Harris 3D: a robust extension of the harris operator for interest point detection on 3D meshes. Vis. Comput. 27(11), 963–976 (2011)

    Article  Google Scholar 

  24. Steder, B., Ruhnke, M., Grzonka, S., Burgard, W.: Place recognition in 3D scans using a combination of bag of words and point feature based relative pose estimation. In: IROS (2011)

    Google Scholar 

  25. Steder, B., Rusu, R.B., Konolige, K., Burgard, W.: Point feature extraction on 3D range scans taking into account object boundaries. In: ICRA (2011)

    Google Scholar 

  26. Taddei, P., Sánchez, C., Rodríguez, A.L., Ceriani, S., Sequeira, V.: Detecting ambiguity in localization problems using depth sensors. In: 3DV (2014)

    Google Scholar 

  27. Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: ECCV (2010)

    Google Scholar 

  28. Yao, J., Ruggeri, M., Taddei, P., Sequeira, V.: Robust surface registration using n-points approximate congruent sets. EURASIP J. Adv. Signal Process. (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sánchez, C., Ceriani, S., Taddei, P., Wolfart, E., Sequeira, V. (2019). Global Registration of Point Clouds for Mapping. In: Strand, M., Dillmann, R., Menegatti, E., Ghidoni, S. (eds) Intelligent Autonomous Systems 15. IAS 2018. Advances in Intelligent Systems and Computing, vol 867. Springer, Cham. https://doi.org/10.1007/978-3-030-01370-7_56

Download citation

Publish with us

Policies and ethics