Skip to main content

Modular Robot that Modeled Cell Membrane Dynamics of a Cellular Slime Mold

  • Conference paper
  • First Online:
Intelligent Autonomous Systems 15 (IAS 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 867))

Included in the following conference series:

  • 1346 Accesses

Abstract

Understanding of the design principles for implementing adaptive functions with respect to engineering currently remains stalled in the conceptual level. However, living organisms exhibit great adaptive function by skillfully relating shape and function in a spatio-temporal manner. In this study, we focus on amoeboid organisms because these organisms have a variable morphology that relates shape and function. Amoeboid organisms in the natural world (i.e., cellular slime molds) locomote through changing the cell membrane shape by inducing the internal protoplasmic streaming. Based on this mechanism, we developed modular robots that modeled the cell membrane dynamics of a cellar slime mold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., Kokaji, S.: M-tran: self-reconfigurable modular robotic system. IEEE/ASME Trans. Mechatron. 7(4), 431–441 (2002)

    Article  Google Scholar 

  2. Miyashita, S., Kessler, M., Lungarella, M.: How morphology affects self-assembly in a stochastic modular robot. In: IEEE International Conference on Robotics and Automation. ICRA 2008, pp. 3533–3538. IEEE (2008)

    Google Scholar 

  3. Firouzeh, A., Sun, Y., Lee, H., Paik, J.: Sensor and actuator integrated low-profile robotic origami. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4937–4944. IEEE (2013)

    Google Scholar 

  4. Zhakypov, Z., Falahi, M., Shah, M., Paik, J.: The design and control of the multi-modal locomotion origami robot, tribot. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4349–4355. IEEE (2015)

    Google Scholar 

  5. Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521(7553), 467–475 (2015)

    Article  Google Scholar 

  6. Umedachi, T., Vikas, V., Trimmer, B.A.: Softworms: the design and control of non-pneumatic, 3D-printed, deformable robots. Bioinspiration biomimetics 11(2), 025001 (2016)

    Article  Google Scholar 

  7. Nishimura, S.I., Ueda, M., Sasai, M.: Cortical factor feedback model for cellular locomotion and cytofission. PLoS Comput. Biol. 5(3), e1000310 (2009)

    Article  Google Scholar 

  8. Fukuda, T., Buss, M., Hosokai, H., Kawauchi, Y.: Cell structured robotic system cebot: control, planning and communication methods. Robot. Auton. Syst. 7(2), 239–248 (1991)

    Article  Google Scholar 

  9. Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: a low cost scalable robot system for collective behaviors. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 3293–3298. IEEE (2012)

    Google Scholar 

  10. Shimizu, M., Ishiguro, A.: Amoeboid locomotion having high fluidity by a modular robot. IJUC 6(2), 145–161 (2010)

    Google Scholar 

  11. Umedachi, T., Ito, K., Ishiguro, A.: Soft-bodied amoeba-inspired robot that switches between qualitatively different behaviors with decentralized stiffness control. Adapt. Behav. 23(2), 97–108 (2015)

    Article  Google Scholar 

  12. Pollard, T.D., Borisy, G.G.: Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4), 453–465 (2003)

    Article  Google Scholar 

  13. Bray, D.: Cell movements: from molecules to motility. Garland Science (2001)

    Google Scholar 

  14. Shibata, T., Nishikawa, M., Matsuoka, S., Ueda, M.: Modeling the self-organized phosphatidylinositol lipid signaling system in chemotactic cells using quantitative image analysis. J. Cell Sci. 125(21), 5138–5150 (2012)

    Article  Google Scholar 

  15. Shibata, T., Nishikawa, M., Matsuoka, S., Ueda, M.: Intracellular encoding of spatiotemporal guidance cues in a self-organizing signaling system for chemotaxis in dictyostelium cells. Biophys. J. 105(9), 2199–2209 (2013)

    Article  Google Scholar 

  16. Asano, Y., Nagasaki, A., Uyeda, T.Q.: Correlated waves of actin filaments and pip3 in dictyostelium cells. Cell Motil. Cytoskelet. 65(12), 923 (2008)

    Article  Google Scholar 

  17. Chen, C.-L., Wang, Y., Sesaki, H., Iijima, M.: Myosin i links pip3 signaling to remodeling of the actin cytoskeleton in chemotaxis. Sci. Signaling 5(209), ra10 (2012)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported partially by Grant-in-Aid for Scientific Research on 15H02763, and 17K19978 from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Shimizu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fuse, R., Shimizu, M., Ikemoto, S., Hosoda, K. (2019). Modular Robot that Modeled Cell Membrane Dynamics of a Cellular Slime Mold. In: Strand, M., Dillmann, R., Menegatti, E., Ghidoni, S. (eds) Intelligent Autonomous Systems 15. IAS 2018. Advances in Intelligent Systems and Computing, vol 867. Springer, Cham. https://doi.org/10.1007/978-3-030-01370-7_24

Download citation

Publish with us

Policies and ethics