Skip to main content

Multiple Device Segmentation for Fluoroscopic Imaging Using Multi-task Learning

  • Conference paper
  • First Online:
Intravascular Imaging and Computer Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis (LABELS 2018, CVII 2018, STENT 2018)

Abstract

For endovascular aortic repair (EVAR), integrating preoperative information of the aortic anatomy with intraoperative fluoroscopy can aid in reducing radiation exposure, contrast agent and procedure time. However, the quality of this fusion may deteriorate over the course of the intervention due to patient movement or deformation of the vasculature caused by interventional tools. Automatically detecting the instruments present in the X-ray image can help to assess the degree of deterioration, trigger automatic re-registration or aid in automatic workflow phase detection and process modeling. In this work, we investigate a flexible approach to segment different devices based on fully convolutional neural networks using multi-task learning. We evaluate the proposed approach on a set of 38 X-ray images acquired during EVAR interventions by targeting the segmentation of aortic stents, stiff guidewires and pigtail catheters. We compare the results to the performance of single-task networks. We manage to keep similar performance compared to single-task networks with Dice coefficients between 0.95 and 0.80 depending on the device, while speeding up computation by a factor of two.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambrosini, P., Ruijters, D., Niessen, W.J., Moelker, A., van Walsum, T.: Fully automatic and real-time catheter segmentation in X-ray fluoroscopy. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 577–585. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_65

    Chapter  Google Scholar 

  2. Baur, C., Albarqouni, S., Demirci, S., Navab, N., Fallavollita, P.: CathNets: detection and single-view depth prediction of catheter electrodes. In: Zheng, G., Liao, H., Jannin, P., Cattin, P., Lee, S.-L. (eds.) MIAR 2016. LNCS, vol. 9805, pp. 38–49. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43775-0_4

    Chapter  Google Scholar 

  3. Breininger, K., Albarqouni, S., Kurzendorfer, T., Pfister, M., Kowarschik, M., Maier, A.: Intraoperative stent segmentation in X-ray fluoroscopy for endovascular aortic repair. IJCARS 13, 1221–1231 (2018). https://doi.org/10.1007/s11548-018-1779-6

    Article  Google Scholar 

  4. Demirci, S., et al.: 3D stent recovery from one X-ray projection. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6891, pp. 178–185. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23623-5_23

    Chapter  Google Scholar 

  5. Hoffmann, M.: Electrophysiology catheter detection and reconstruction from two views in fluoroscopic images. IEEE Trans. Med. Imaging 35(2), 567–579 (2015). https://doi.org/10.1109/TMI.2015.2482539

    Article  Google Scholar 

  6. Kauffmann, C.: Source of errors and accuracy of a two-dimensional/three-dimensional fusion road map for endovascular aneurysm repair of abdominal aortic aneurysm. JVIR 26(4), 544–551 (2015). https://doi.org/10.1016/j.jvir.2014.12.019

    Article  Google Scholar 

  7. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015). https://dare.uva.nl/search?identifier=a20791d3-1aff-464a-8544-268383c33a75

  8. Lessard, S., et al.: Automatic detection of selective arterial devices for advanced visualization during abdominal aortic aneurysm endovascular repair. Med. Eng. Phys. 37(10), 979–986 (2015). https://doi.org/10.1016/j.medengphy.2015.07.007

    Article  Google Scholar 

  9. McNally, M.M., Scali, S.T., Feezor, R.J., Neal, D., Huber, T.S., Beck, A.W.: Three-dimensional fusion computed tomography decreases radiation exposure, procedure time, and contrast use during fenestrated endovascular aortic repair. J. Vasc. Surg. 61(2), 309–316 (2015). https://doi.org/10.1016/j.jvs.2014.07.097

    Article  Google Scholar 

  10. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: IEEE International Conference on 3DVision (2016)

    Google Scholar 

  11. Moeskops, P., et al.: Deep learning for multi-task medical image segmentation in multiple modalities. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 478–486. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_55

    Chapter  Google Scholar 

  12. Panuccio, G., et al.: Computer-aided endovascular aortic repair using fully automated two-and three-dimensional fusion imaging. J. Vasc. Surg. 64, 1587–1594 (2016). https://doi.org/10.1016/j.jvs.2016.05.100

    Article  Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Tacher, V., et al.: Image guidance for endovascular repair of complex aortic aneurysms: comparison of two-dimensional and three-dimensional angiography and image fusion. JVIR 24(11), 1698–1706 (2013). https://doi.org/10.1016/j.jvir.2013.07.016

    Article  Google Scholar 

  15. Toth, D., Pfister, M., Maier, A., Kowarschik, M., Hornegger, J.: Adaption of 3D models to 2D X-ray images during endovascular abdominal aneurysm repair. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 339–346. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_42

    Chapter  Google Scholar 

  16. Volpi, D., Sarhan, M.H., Ghotbi, R., Navab, N., Mateus, D., Demirci, S.: Online tracking of interventional devices for endovascular aortic repair. IJCARS 10(6), 773–781 (2015). https://doi.org/10.1007/s11548-015-1217-y

    Article  Google Scholar 

  17. Wang, C.: Segmentation of multiple structures in chest radiographs using multi-task fully convolutional networks. In: Sharma, P., Bianchi, F.M. (eds.) SCIA 2017. LNCS, vol. 10270, pp. 282–289. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59129-2_24

    Chapter  Google Scholar 

  18. Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Facial landmark detection by deep multi-task learning. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 94–108. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_7

    Chapter  Google Scholar 

  19. Zhong, X., Hoffmann, M., Strobel, N., Maier, A.: Improved semi-automatic basket catheter reconstruction from two X-ray views. In: Tolxdorff, T., Deserno, T.M., Handels, H., Meinzer, H.P. (eds.) Bildverarbeitung für die Medizin 2016. I, pp. 26–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49465-3_7

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Breininger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Breininger, K. et al. (2018). Multiple Device Segmentation for Fluoroscopic Imaging Using Multi-task Learning. In: Stoyanov, D., et al. Intravascular Imaging and Computer Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. LABELS CVII STENT 2018 2018 2018. Lecture Notes in Computer Science(), vol 11043. Springer, Cham. https://doi.org/10.1007/978-3-030-01364-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01364-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01363-9

  • Online ISBN: 978-3-030-01364-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics