Skip to main content

Small and Large Molecules Investigated by Raman Spectroscopy

From Conformational Study to Biomedical Applications

  • Chapter
  • First Online:
Molecular Spectroscopy—Experiment and Theory

Abstract

This chapter presents selected techniques of Raman spectroscopy, i.e. Raman imaging , Raman optical activity (ROA) , and surface-enhanced Raman spectroscopy (SERS) , and gives an overview on their biomedical applications. The current state of the art in the research on chiroptical compounds of biomedical importance, as well as the study on early apoptosis and inflammation processes occuring in the endothelium , is presented. The pathophysiology of the endothelium is discussed based on the example of Raman imaging results for primary cells and cell cultures. Moreover, the comparison of classical Raman imaging, application of optical fiber probes, and immuno-SERS nanosensors in detection of marker proteins in ex vivo studies is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atkins PW, Barron LD (1969) Rayleigh scattering of polarized photons by molecules. Mol Phys 16:453–466

    Article  CAS  Google Scholar 

  2. Barron LD, Buckingham AD (1971) Rayleigh and Raman scattering from optically active molecules. Mol Phys 20:1111–1119

    Article  CAS  Google Scholar 

  3. Barron LD, Bogaard MP, Buckingham AD (1973) Raman scattering of circularly polarized light by optically active molecules. J Am Chem Soc 95:603–605

    Article  CAS  Google Scholar 

  4. Hecht L, Barron LD, Blanch EW, Bell AF, Day LA, Ziegler LD (1999) Raman optical activity instrument for studies of biopolymer structure and dynamics. J Raman Spectrosc 30:815–825

    Article  CAS  Google Scholar 

  5. Hug W (2003) Virtual enantiomers as the solution of optical activity’s deterministic offset problem. Appl Spectrosc 57:1–13

    Article  CAS  PubMed  Google Scholar 

  6. Hug W (2010) Raman optical activity, spectrometers A2. In: Lindon JC (ed) BT—encyclopedia of spectroscopy and spectrometry, 2nd edn. Academic Press, Oxford, pp 2387–2396

    Chapter  Google Scholar 

  7. Kapitán J, Barron LD, Hecht L (2015) A novel Raman optical activity instrument operating in the deep ultraviolet spectral region. J Raman Spectrosc 46:392–399

    Article  CAS  Google Scholar 

  8. Kubota K, Shingae T, Foster ND, Kumauchi M, Hoff WD, Unno M (2013) Active site structure of photoactive yellow protein with a locked chromophore analogue revealed by near-infrared Raman optical activity. J Phys Chem Lett 4:3031–3038

    Article  CAS  Google Scholar 

  9. Profant V, Pazderková M, Pazderka T, Maloň P, Baumruk V (2014) Relative intensity correction of Raman optical activity spectra facilitates extending the spectral region. J Raman Spectrosc 45:603–609

    Article  CAS  Google Scholar 

  10. Shingae T, Kubota K, Kumauchi M, Tokunaga F, Unno M (2013) Raman optical activity probing structural deformations of the 4-hydroxycinnamyl chromophore in photoactive yellow protein. J Phys Chem Lett 4:1322–1327

    Article  CAS  PubMed  Google Scholar 

  11. Unno M, Kikukawa T, Kumauchi M, Kamo N (2013) Exploring the active site structure of a photoreceptor protein by Raman optical activity. J Phys Chem B 117:1321–1325

    Article  CAS  PubMed  Google Scholar 

  12. Yamamoto S, Watarai H (2010) Incident circularly polarized Raman optical activity spectrometer based on circularity conversion method. J Raman Spectrosc 41:1664–1669

    Article  CAS  Google Scholar 

  13. Zhang Y, Wang P, Jia G, Cheng F, Li C (2017) A short-wavelength Raman optical activity spectrometer with laser source at 457 nm for the characterization of chiral molecules. Appl Spectrosc 71:2211–2217

    Article  CAS  PubMed  Google Scholar 

  14. Barron LD, Hecht L, Blanch EW, Bell AF (2000) Solution structure and dynamics of biomolecules from Raman optical activity. Prog Biophys Mol Biol 73:1–49

    Article  CAS  PubMed  Google Scholar 

  15. Blanch E (2003) Vibrational Raman optical activity of proteins, nucleic acids, and viruses. Methods 29:196–209

    Article  CAS  PubMed  Google Scholar 

  16. Barron LD, Hecht L, McColl IH, Blanch EW (2004) Raman optical activity comes of age. Mol Phys 102:731–744

    Article  CAS  Google Scholar 

  17. Hecht L, Phillips AL, Barron LD (1995) Determination of enantiomeric excess using Raman optical activity. J Raman Spectrosc 26:727–732

    Article  CAS  Google Scholar 

  18. Blanch EW, Bell AF, Hecht L, Day LA, Barron LD (1999) Raman optical activity of filamentous bacteriophages: hydration of α-helices. J Mol Biol 290:1–7

    Article  CAS  PubMed  Google Scholar 

  19. Wen ZQ, Barron LD, Hecht L (1993) Vibrational Raman optical activity of monosaccharides. J Am Chem Soc 115:285–292

    Article  CAS  Google Scholar 

  20. Bell AF, Hecht L, Barron LD (1994) Disaccharide solution stereochemistry from vibrational Raman optical activity. J Am Chem Soc 116:5155–5161

    Article  CAS  Google Scholar 

  21. Bell AF, Hecht L, Barron LD (1995) Vibrational Raman optical activity of ketose monosaccharides. Spectrochim Acta A 51:1367–1378

    Article  Google Scholar 

  22. Blanch EW, Hecht L, Barron LD (2003) Vibrational Raman optical activity of proteins, nucleic acids, and viruses. Methods 29:196–209

    Article  CAS  PubMed  Google Scholar 

  23. Kessler J, Yamamoto S, Bouř P (2017) Establishing the link between fibril formation and Raman optical activity spectra of insulin. Phys Chem Chem Phys 19:13614–13621

    Article  CAS  PubMed  Google Scholar 

  24. Gąsior-Głogowska M, Malek K, Zajac G, Baranska M (2016) A new insight into the interaction of cisplatin with DNA: ROA spectroscopic studies on the therapeutic effect of the drug. Analyst 141:291–296

    Article  PubMed  CAS  Google Scholar 

  25. Polavarapu PL (1990) Ab initio vibrational Raman and Raman optical activity spectra. J Phys Chem 94:8106–8112

    Article  CAS  Google Scholar 

  26. Bose PK, Polavarapu PL, Barron LD, Hecht L (1990) Ab initio and experimental Raman optical activity in (+)-(R)-methyloxirane. J Phys Chem 94:1734–1740

    Article  CAS  Google Scholar 

  27. Ruud K, Helgaker T, Bouř P (2002) Gauge-origin independent density-functional theory calculations of vibrational Raman optical activity. J Phys Chem A 106:7448–7455

    Article  CAS  Google Scholar 

  28. Jovan Jose KV, Raghavachari K (2016) Raman optical activity spectra for large molecules through molecules-in-molecules fragment-based approach. J Chem Theory Comput 12:585–594

    Article  CAS  PubMed  Google Scholar 

  29. Kessler J, Kapitán J, Bouř P (2015) First-principles predictions of vibrational Raman optical activity of globular proteins. J Phys Chem Lett 6:3314–3319

    Article  CAS  Google Scholar 

  30. Abdali S, Blanch EW (2008) Surface enhanced Raman optical activity (SEROA). Chem Soc Rev 37:980–992

    Article  CAS  PubMed  Google Scholar 

  31. Hiramatsu K, Leproux P, Couderc V, Nagata T, Kano H (2015) Raman optical activity spectroscopy by visible-excited coherent anti-Stokes Raman scattering. Opt Lett 40:4170–4173

    Article  CAS  PubMed  Google Scholar 

  32. Tatarkovič M, Miškovičová M, Šťovíčková L, Synytsya A, Petruželka L, Setnička V (2015) The potential of chiroptical and vibrational spectroscopy of blood plasma for the discrimination between colon cancer patients and the control group. Analyst 140:2287–2293

    Article  PubMed  CAS  Google Scholar 

  33. Šebestík J, Teplý F, Císařová I, Vávra J, Koval D, Bouř P (2016) Intense chirality induction in nitrile solvents by a helquat dye monitored by near resonance Raman scattering. Chem Commun 52:6257–6260

    Article  Google Scholar 

  34. Šebestík J, Bouř P (2011) Raman optical activity of methyloxirane gas and liquid. J Phys Chem Lett 2:498–502

    Article  CAS  Google Scholar 

  35. Šebestík J, Kapitán J, Pačes O, Bouř P (2016) Diamagnetic Raman optical activity of chlorine, bromine, and iodine gases. Angew Chem—Int Ed 55:3504–3508

    Article  PubMed  CAS  Google Scholar 

  36. Šebestík J, Bouř P (2014) Observation of paramagnetic Raman optical activity of nitrogen dioxide. Angew Chem—Int Ed 53:9236–9239

    Article  PubMed  CAS  Google Scholar 

  37. Wu T, Kapitán J, Mašek V, Bouř P (2015) Detection of circularly polarized luminescence of a Cs–EuIII complex in Raman optical activity experiments. Angew Chem—Int Ed 54:14933–14936

    Article  CAS  PubMed  Google Scholar 

  38. Nafie LA (1996) Theory of resonance Raman optical activity: the single electronic state limit. Chem Phys 205:309–322

    Article  CAS  Google Scholar 

  39. Vargek M, Freedman TB, Lee E, Nafie L (1998) Experimental observation of resonance Raman optical activity. Chem Phys Lett 287:359–364

    Article  CAS  Google Scholar 

  40. Merten C, Li H, Nafie LA (2012) Simultaneous resonance Raman optical activity involving two electronic states. J Phys Chem A 116:7329–7336

    Article  CAS  PubMed  Google Scholar 

  41. Haraguchi S, Hara M, Shingae T, Kumauchi M, Hoff WD, Unno M (2015) Experimental detection of the intrinsic difference in Raman optical activity of a photoreceptor protein under preresonance and resonance conditions. Angew Chem—Int Ed 54 11555–11558

    Article  CAS  PubMed  Google Scholar 

  42. Magg M, Kadria-Vili Y, Oulevey P, R. Weisman B, Bürgi T (2016) Resonance Raman optical activity spectra of single-walled carbon nanotube enantiomers. J Phys Chem Lett 7:221–225

    Article  PubMed  CAS  Google Scholar 

  43. Zajac G, Kaczor A, Pallares Zazo A, Mlynarski J, Dudek M, Baranska M (2016) Aggregation-induced resonance raman optical activity (AIRROA): a new mechanism for chirality enhancement. J Phys Chem B 120:4028–4033

    Article  CAS  PubMed  Google Scholar 

  44. Dudek M, Zajac G, Kaczor A, Baranska M (2016) Aggregation-induced resonance Raman optical activity (AIRROA) and time-dependent helicity switching of astaxanthin supramolecular assemblies. J Phys Chem B 120:7807–7814

    Article  CAS  PubMed  Google Scholar 

  45. Zajac G, Lasota J, Dudek M, Kaczor A, Baranska M (2017) Pre-resonance enhancement of exceptional intensity in aggregation-induced Raman optical activity (AIROA) spectra of lutein derivatives. Spectrochim Acta A 173:356–360

    Article  CAS  Google Scholar 

  46. Dudek M, Zajac G, Kaczor A, Baranska M (2017) Resonance Raman optical activity of zeaxanthin aggregates. J Raman Spectrosc 48:673–679

    Article  CAS  Google Scholar 

  47. Procházka M (2016) Surface-enhanced Raman spectroscopy. Bioanalytical, biomolecular and medical applications. Springer International Publishing, Switzerland

    Book  Google Scholar 

  48. Schlücker S (ed) (2011) Surface-enhanced raman spectroscopy. Analytical, biophysical and life science applications. Wiley-VCH Verlag & Co. KGaA, Weinheim

    Google Scholar 

  49. Aroca R (2006) Surface-enhanced vibrational spectroscopy. Wiley, Chichester

    Book  Google Scholar 

  50. Kaczor A, Malek K, Baranska M (2010) Pyridine on colloidal silver. Polarization of surface studied by surface-enhanced Raman scattering and density functional theory methods. J Phys Chem C 114:3909–3917

    Article  CAS  Google Scholar 

  51. Jaworska A, Malek K (2014) A comparison between adsorption mechanism of tricyclic antidepressants on silver nanoparticles and binding modes on receptors. Surface-enhanced Raman spectroscopy studies. J Colloid Interface Sci 431:117–124

    Article  CAS  PubMed  Google Scholar 

  52. Jaworska A, Wietecha-Posłuszny R, Woźniakiewicz M, Koscielniak P, Malek K (2011) Evaluation of the potential of surface enhancement Raman spectroscopy for detection of tricyclic psychotropic drugs. Case studies on imipramine and its metabolite. Anal 136:4704–4709

    Article  CAS  Google Scholar 

  53. Živanović V, Madzharova F, Heiner Z, Arenz C, Kneipp J (2017) Specific interaction of rricyclic antidepressants with gold and silver nanostructures as revealed by combined one- and two-photon vibrational spectroscopy. J Phys Chem C 121:22958–22968

    Article  CAS  Google Scholar 

  54. Cîntǎ-Pînzaru S, Peica N, Küstner B, Schlücker S, Schmitt M, Frosch T, Faber JH, Bringmann G, Popp J (2006) FT-Raman and NIR-SERS characterization of the antimalarial drugs chloroquine and mefloquine and their interaction with hematin. J Raman Spectrosc 37:326–334

    Article  CAS  Google Scholar 

  55. Jaworska A, Malek K, Marzec KM, Baranska M (2012) Nicotinamide and trigonelline studied with surface-enhanced FT-Raman spectroscopy. Vib Spectrosc 63:469–476

    Article  CAS  Google Scholar 

  56. Jaworska A, Malek K, Marzec KM, Baranska M (2014) An impact of the ring substitution in nicorandil on its adsorption on silver nanoparticles. Surface-enhanced Raman spectroscopy studies. Spectrochim Acta A 129:624–631

    Article  CAS  Google Scholar 

  57. Marzec KM, Jaworska A, Malek K, Kaczor A, Baranska M (2013) Substituent effect on structure and surface activity of N-methylpyridinium salts studied by FT-IR, FT-RS, SERS and DFT calculations. J Raman Spectrosc 44:155–165

    Article  CAS  Google Scholar 

  58. Ostovar Pour S, Rocks L, Faulds K, Graham D, Parchaňský V, Bouř P, Blanch EW (2015) Through-space transfer of chiral information mediated by a plasmonic nanomaterial. Nat Chem 7:591–596

    Article  CAS  PubMed  Google Scholar 

  59. Rygula A, Majzner K, Marzec KM, Kaczor A, Pilarczyk M, Baranska M (2013) Raman spectroscopy of proteins: a review. J Raman Spectrosc 44:1061–1076

    Article  CAS  Google Scholar 

  60. Pacia MZ, Mateuszuk L, Chlopicki S, Baranska M, Kaczor A (2015) Biochemical changes of the endothelium in the murine model of NO-deficient hypertension. Analyst 140:2178–2184

    Article  CAS  PubMed  Google Scholar 

  61. Schulz H, Baranska M (2007) Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib Spectrosc 43:13–25

    Article  CAS  Google Scholar 

  62. Czamara K, Majzner K, Pacia MZ, Kochan K, Kaczor A, Baranska M (2015) Raman spectroscopy of lipids: a review. J Raman Spectrosc 46:4–20

    Article  CAS  Google Scholar 

  63. Byrne HJ, Baranska M, Puppels GJ, Stone N, Wood B, Gough KM, Lasch P, Heraud P, Sulé-Susoj J, Sockalingum GD (2015) Spectropathology for the next generation: quo vadis? Analyst 140:2066–2073

    Article  CAS  PubMed  Google Scholar 

  64. Aird WC (2007) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100:158–173

    Article  CAS  PubMed  Google Scholar 

  65. Bouis D, Hospers GAP, Meijer C, Molema G, Mulder NH (2001) Endothelium in vitro: a review of human vascular endothelial cell lines for blood vessel-related research. Angiogenesis 4:91–102

    Article  CAS  PubMed  Google Scholar 

  66. Aird WC (2003) Endothelial cell heterogeneity. Crit Care Med 31:S221–S230

    Article  PubMed  Google Scholar 

  67. Wilson SE, Lloyd SA, He YG, McCash CS (1993) Extended life of human corneal endothelial cells transfected with the SV40 large T antigen. Invest Ophthalmol Vis Sci 34:2112–2123

    CAS  PubMed  Google Scholar 

  68. Edgell CJ, McDonald CC, Graham JB (1983) Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci 80:3734–3737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ades E, Candal F, Swerlick R, George VG, Summers S, Bosse DC, Lawley TJ (1992) HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J Invest Dermatol 99:683–690

    Article  CAS  PubMed  Google Scholar 

  70. Lidington EA, Moyes DL, McCormack AM, Rose ML (1999) A comparison of primary endothelial cells and endothelial cell lines for studies of immune interactions. Transpl Immunol 7:239–246

    Article  CAS  PubMed  Google Scholar 

  71. Baranska M, Kaczor A, Malek K, Jaworska A, Majzner K, Staniszewska-Slezak E, Pacia MZ, Zajac G, Dybas J, Wiercigroch E (2015) Raman microscopy as a novel tool to detect endothelial dysfunction. Pharmacol Reports 67:736–743

    Article  CAS  Google Scholar 

  72. Pacia MZ, Buczek E, Blazejczyk A, Gregorius A, Wietrzyk J, Chlopicki Baranska M, Kaczoret A (2016) 3D Raman imaging of systemic endothelial dysfunction in the murine model of metastatic breast cancer. Anal Bioanal Chem 408:3381–3387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pacia MZ, Mateuszuk L, Buczek E, Chlopicki S, Blazejczyk A, Wietrzyk A, Baranska M, Kaczor A (2016) Rapid biochemical profiling of endothelial dysfunction in diabetes, hypertension and cancer metastasis by hierarchical cluster analysis of Raman spectra. J Raman Spectrosc 47:1310–1317

    Article  CAS  Google Scholar 

  74. Pilarczyk M, Mateuszuk L, Rygula A, Kepczynski M, Chlopicki S, Baranska M, Kaczor A (2014) Endothelium in spots—high-content imaging of lipid rafts clusters in db/db mice. PLoS ONE 9:e106065

    Article  PubMed  PubMed Central  Google Scholar 

  75. Pilarczyk M, Rygula A, Mateuszuk L, Chlopicki S, Baranska M, Kaczor A (2013) Multi-methodological insight into the vessel wall cross-section: Raman and AFM imaging combined with immunohistochemical staining. Biomed Spectrosc Imaging 2:191–197

    CAS  Google Scholar 

  76. Rygula A, Pacia MZ, Mateuszuk L, Kaczor A, Kostogrys RB, Chlopicki S, Baranska M (2015) Identification of a biochemical marker for endothelial dysfunction using Raman spectroscopy. Analyst 140:2185–2189

    Article  CAS  PubMed  Google Scholar 

  77. Buschman HP, Marple ET, Wach ML, Bennett B, Bakker Schut TC, Bruining HA, Bruschke AV, van der Laarse A, Puppels GJ (2000) In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy. Anal Chem 72:3771–3775

    Article  CAS  PubMed  Google Scholar 

  78. Wang HW, Le TT, Cheng JX (2008) Label-free imaging of arterial cells and extracellular matrix using a multimodal CARS microscope. Opt Commun 281:1813–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Majzner K, Kaczor A, Kachamakova-Trojanowska N, Fedorowicz A, Chlopicki S, Baranska M (2013) 3D confocal Raman imaging of endothelial cells and vascular wall: perspectives in analytical spectroscopy of biomedical research. Analyst 138:603–610

    Article  CAS  PubMed  Google Scholar 

  80. Elsheikha HM, Alkurashi M, Kong K, Zhu X-Q (2014) Metabolic footprinting of extracellular metabolites of brain endothelium infected with Neospora caninum in vitro. BMC Res Notes 7:406

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  81. Große C, Bergner N, Dellith J, Heller R, Bauer M, Mellmann A, Popp J, Neugebauer U (2015) Label-free imaging and spectroscopic analysis of intracellular bacterial infections. Anal Chem 87:2137–2142

    Article  PubMed  CAS  Google Scholar 

  82. Kong K, Rowlands CJ, Elsheikha H, Notingher I (2012) Label-free molecular analysis of live Neospora caninum tachyzoites in host cells by selective scanning Raman micro-spectroscopy. Analyst 137:4119–4122

    Article  CAS  PubMed  Google Scholar 

  83. Majzner K, Kochan K, Kachamakova-Trojanowska N, Maslak E, Chlopicki S, Baranska M (2014) Raman imaging provides insights into chemical composition of lipid droplets of different size and origin: in hepatocytes and endothelium. Anal Chem 86:6666–6674

    Article  CAS  PubMed  Google Scholar 

  84. Majzner K, Chlopicki S, Baranska M (2016) Lipid droplets formation in human endothelial cells in response to polyunsaturated fatty acids and 1-methyl-nicotinamide (MNA); confocal Raman imaging and fluorescence microscopy studies. J Biophotonics 9:396–405

    Article  CAS  PubMed  Google Scholar 

  85. Astanina K, Koch M, Jüngst C, Zumbusch A, Kiemer AK (2015) Lipid droplets as a novel cargo of tunnelling nanotubes in endothelial cells. Sci Rep 5:11453

    Article  PubMed  PubMed Central  Google Scholar 

  86. Melo RC, D’Avila H, Wan HC, Bozza PT, Dvorak AM, Weller PF (2011) Lipid bodies in inflammatory cells. J Histochem Cytochem 59:540–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pi J, Li T, Liu J, Su X, Wang R, Yang F, Bai H, Jin H, Cai J (2014) Detection of lipopolysaccharide induced inflammatory responses in RAW264.7 macrophages using atomic force microscope. Micron 65:1–9

    Article  CAS  PubMed  Google Scholar 

  88. Szymonski M, Targosz-Korecka M, Malek-Zietek KE (2015) Nano-mechanical model of endothelial dysfunction for AFM-based diagnostics at the cellular level. Pharmacol Rep 67:728–735

    Article  CAS  PubMed  Google Scholar 

  89. Pober JS, Sessa WC (2007) Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 7:803–815

    Article  CAS  PubMed  Google Scholar 

  90. Czamara K, Majzner K, Selmi A, Baranska M, Ozaki Y, Kaczor A (2017) Unsaturated lipid bodies as a hallmark of inflammation studied by Raman 2D and 3D microscopy. Sci Rep 7:40889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang D, Feng Y, Zhang Q, Su X, Lu X, Liu S, Zhong L (2015) Raman spectrum reveals the cell cycle arrest of Triptolide-induced leukemic T-lymphocytes apoptosis. Spectrochim Acta A 141:216–222

    Article  CAS  Google Scholar 

  92. Moritz TJ, Taylor DS, Krol DM, Fritch J, Chan JW (2010) Detection of doxorubicin-induced apoptosis of leukemic T-lymphocytes by laser tweezers Raman spectroscopy. Biomed Opt Express 1:1138–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Huang H, Shi H, Feng S, Chen W, Yu Y, Lina D, Chen R (2013) Confocal Raman spectroscopic analysis of the cytotoxic response to cisplatin in nasopharyngeal carcinoma cells. Anal Methods 5:260–266

    Article  CAS  Google Scholar 

  94. Lipiec E, Bambery KR, Heraud P, Kwiatek WM, McNaughton D, Tobin MJ, Vogel C, Wood BR (2014) Monitoring UVR induced damage in single cells and isolated nuclei using SR-FTIR microspectroscopy and 3D confocal Raman imaging. Analyst 139:4200–4209

    Article  CAS  PubMed  Google Scholar 

  95. Li B, Lu MQ, Wang QZ, Shi G, Liao W, Huang S (2015) Raman spectra analysis for single mitochondrias after apoptosis process of yeast cells stressed by acetic acid. Fenxi Huaxue Chin J Anal Chem 43:643–650

    Article  CAS  Google Scholar 

  96. Yao H, Tao Z, Ai M, Peng L, Wang G, He B, Li Y (2009) Raman spectroscopic analysis of apoptosis of single human gastric cancer cells. Vib Spectrosc 50:193–197

    Article  CAS  Google Scholar 

  97. Panza J, Maier J (2007) Raman spectroscopy and Raman chemical imaging of apoptotic cells. Imag Manip Anal Biomol Cells Tissue V 6441:6441081–64410812

    Google Scholar 

  98. Ong YH, Lim M, Liu Q (2012) Comparison of principal component analysis and biochemical component analysis in Raman spectroscopy for the discrimination of apoptosis and necrosis in K562 leukemia cells. Opt Express 20:22158–22171

    Article  CAS  PubMed  Google Scholar 

  99. Brauchle E, Thude S, Brucker SY, Schenke-Layland K (2015) Cell death stages in single apoptotic and necrotic cells monitored by Raman microspectroscopy. Sci Rep 4:4698

    Article  CAS  Google Scholar 

  100. Jiang X, Jiang Z, Xu T, Su S, Zhong Y, Peng F, Su Y, He Y (2013) Surface-enhanced Raman scattering-based sensing in vitro: facile and label-free detection of apoptotic cells at the single-cell level. Anal Chem 85:2809–2816

    Article  CAS  PubMed  Google Scholar 

  101. Pliss A, Kuzmin AN, Kachynski AV, Prasad PN (2010) Biophotonic probing of macromolecular transformations during apoptosis. Proc Natl Acad Sci U S A 107:12771–12776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Verrier S, Notingher I, Polak JM, Hench LL (2004) In situ monitoring of cell death using Raman microspectroscopy. Biopolymers 74:157–162

    Article  CAS  PubMed  Google Scholar 

  103. Zoladek A, Pascut FC, Patel P, Notingher I (2011) Non-invasive time-course imaging of apoptotic cells by confocal Raman micro-spectroscopy. J Raman Spectrosc 42:251–258

    Article  CAS  Google Scholar 

  104. Fazio E, Trusso S, Franco D, Nicolò MS, Allegra A, Neri F, Musolino C, Guglielmino SP (2016) A micro-Raman spectroscopic investigation of leukemic U-937 cells in aged cultures. Spectrochim Acta A 159:21–29

    Article  CAS  Google Scholar 

  105. Okada M, Smith NI, Palonpon AF, Endo H, Kawata S, Sodeoka M, Fujita K (2012) Label-free Raman observation of cytochrome c dynamics during apoptosis. Proc Natl Acad Sci 109:28–32

    Article  CAS  PubMed  Google Scholar 

  106. Czamara K, Petko F, Baranska M, Kaczor A (2016) Raman microscopy at the subcellular level: a study on early apoptosis in endothelial cells induced by Fas ligand and cycloheximide. Analyst 141:1390–1397

    Article  CAS  PubMed  Google Scholar 

  107. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:3–6

    Article  Google Scholar 

  108. Schneider-Poetsch T, Ju J, Eyler DE, Dang Y, Bhat S, Merrick WC, Green R, Shen B, Liu JO (2010) Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nat Chem Biol 6:209–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Farhane Z, Nawaz H, Bonnier F, Byrne HJ (2018) In vitro label-free screening of chemotherapeutic drugs using Raman microspectroscopy: towards a new paradigm of spectralomics. J Biophotonics 11. https://doi.org/10.1002/jbio.201700258

    Article  CAS  Google Scholar 

  110. Siddique MR, Rutter AV, Wehbe K, Cinque G, Bellisolac G, Sulé-Suso J (2017) Effects of nilotinib on leukaemia cells using vibrational microspectroscopy and cell cloning. Analyst 142:1299–1307

    Article  CAS  PubMed  Google Scholar 

  111. Nawaz H, Bonnier F, Meade AD, Lynga FM, Byrne HJ (2011) Comparison of subcellular responses for the evaluation and prediction of the chemotherapeutic response to cisplatin in lung adenocarcinoma using Raman spectroscopy. Analyst 136:2450–2463

    Article  CAS  PubMed  Google Scholar 

  112. Farhane Z, Bonnier F, Casey A, Byrne HJ (2015) Raman micro spectroscopy for in vitro drug screening: subcellular localisation and interactions of doxorubicin. Analyst 140:4212–4223

    Article  CAS  PubMed  Google Scholar 

  113. Gewirtz DA (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57:727–741

    Article  CAS  PubMed  Google Scholar 

  114. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229

    Article  CAS  PubMed  Google Scholar 

  115. Ciesielska E, Studzian K, Wąsowska M, Oszczapowicz I, Szmigiero L (2015) Cytotoxicity, cellular uptake and DNA damage by daunorubicin and its new analogues with modified daunosamine moiety. Cell Biol Toxicol 21:139–147

    Article  CAS  Google Scholar 

  116. Szafraniec E, Majzner K, Farhane Z, Byrne HJ, Lukawska M, Oszczapowicz I, Chlopicki S, Baranska M (2016) Spectroscopic studies of anthracyclines: structural characterization and in vitro tracking. Spectrochim Acta A 169:152–160

    Article  CAS  Google Scholar 

  117. Majzner K, Wojcik T, Szafraniec E, Lukawska M, Oszczapowicz I, Chlopicki S, Baranska M (2015) Nuclear accumulation of anthracyclines in the endothelium studied by bimodal imaging: fluorescence and Raman microscopy. Analyst 140:2302–2310

    Article  CAS  PubMed  Google Scholar 

  118. Zhang Q, Lu X, Tang P, Zhang D, Zhong L, Tian J (2016) Gold nanoparticle (AuNP)-based surface-enhanced Raman scattering (SERS) probe of leukemic lymphocytes. Plasmonics 11:1361–1368

    Article  CAS  Google Scholar 

  119. Fabris L (2015) Gold-based SERS tags for biomedical imaging. J Opt 17:114002

    Article  CAS  Google Scholar 

  120. Huang JY, Zong C, Xu LJ, Cui Y, Ren B (2011) Clean and modified substrates for direct detection of living cells by surface-enhanced Raman spectroscopy. Chem Commun 47:5738–5740

    Article  CAS  Google Scholar 

  121. Taylor J, Huefner A, Li L, Wingfieldc J, Mahajan S (2016) Nanoparticles and intracellular applications of surface-enhanced Raman spectroscopy. Analyst 141:5037–5055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Jaworska A, Wojcik T, Malek K, Kwolek U, Kepczynski M, Ansary AA, Chlopicki S, Baranska M (2015) Rhodamine 6G conjugated to gold nanoparticles as labels for both SERS and fluorescence studies on live endothelial cells. Microchim Acta 182:119–127

    Article  CAS  Google Scholar 

  123. Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K (2006) In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Lett 6:2225–2231

    Article  CAS  PubMed  Google Scholar 

  124. Panikkanvalappil SR, Hira SM, El-Sayed MA (2016) Elucidation of ultraviolet radiation-induced cell responses and intracellular biomolecular dynamics in mammalian cells using surface-enhanced Raman spectroscopy. Chem Sci 7:1133–1141

    Article  CAS  PubMed  Google Scholar 

  125. Huang J, Zong C, Shen H, Cao U, Ren B, Zhang Z (2013) Tracking the intracellular drug release from graphene oxide using surface-enhanced Raman spectroscopy. Nanoscale 5:10591–10598

    Article  CAS  PubMed  Google Scholar 

  126. Kim JH, Kim JS, Choi H, Lee SM, Jun BH, Yu KN, Kuk E, Kim YK, Jeong DH, Cho MH, Lee YS (2006) Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting. Anal Chem 78:6967–6973

    Article  CAS  PubMed  Google Scholar 

  127. Cialla-May D, Zheng X-S, Weber K, Popp J (2017) Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chem Soc Rev 46:3945–3961

    Article  CAS  PubMed  Google Scholar 

  128. Jaworska A, Jamieson LE, Malek K, Campbell CJ, Choo J, Chlopicki S, Baranska M (2015) SERS-based monitoring of the intracellular pH in endothelial cells: the influence of the extracellular environment and tumour necrosis factor-α. Analyst 140:2321–2329

    Article  CAS  PubMed  Google Scholar 

  129. Talley CE, Jusinski L, Hollars CW, Lane SM, Huser T (2004) Intracellular pH sensors based on surface-enhanced Raman scattering. Anal Chem 76:7064–7068

    Article  CAS  PubMed  Google Scholar 

  130. Wang F, Widejko RG, Yang Z, Nguyen KT, Chen H, Fernando LP, Christensen KA, Anker JN (2012) Surface-enhanced Raman scattering detection of pH with silica-encapsulated 4-mercaptobenzoic acid-functionalized silver nanoparticles. Anal Chem 84:8013–8019

    Article  CAS  PubMed  Google Scholar 

  131. Wei H, Willner MR, Marr LC, Vikesland PJ (2016) Highly stable SERS pH nanoprobes produced by co-solvent controlled AuNP aggregation. Analyst 141:5159–5169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lim JK, Joo S-W (2006) Gold nanoparticle-based pH sensor in highly alkaline region at pH > 11: surface-enhanced Raman scattering study. Appl Spectrosc 60:847–852

    Article  CAS  PubMed  Google Scholar 

  133. Wang Z, Bonoiu A, Samoc M, Cui Y, Prasad PN (2008) Biological pH sensing based on surface enhanced Raman scattering through a 2-aminothiophenol-silver probe. Biosens Bioelectron 23:886–891

    Article  CAS  PubMed  Google Scholar 

  134. Chen P, Wang Z, Zong S, Zhu D, Chen H, Zhang Y, Wu L, Cui Y (2016) pH-sensitive nanocarrier based on gold/silver core–shell nanoparticles decorated multi-walled carbon manotubes for tracing drug release in living cells. Biosens Bioelectron 75:446–451

    Article  CAS  PubMed  Google Scholar 

  135. Song J, Zhou J, Duan H (2012) Self-assembled plasmonic vesicles of SERS-Encoded amphiphilic gold nanoparticles for cancer cell targeting and traceable intracellular drug delivery. J Am Chem Soc 134:13458–13469

    Article  CAS  PubMed  Google Scholar 

  136. Bobba KN, Saranya G, Alex SM, Velusamy N, Maiti KK, Bhuniya S (2018) SERS-active multi-channel fluorescent probe for NO: guide to discriminate intracellular biothiols. Sensors Actuators B Chem 260:165–173

    Article  CAS  Google Scholar 

  137. Cao Y, Li DW, Zhao LJ, Liu XY, Cao XM, Long YT (2015) Highly selective detection of carbon monoxide in living cells by palladacycle carbonylation-based surface enhanced raman spectroscopy nanosensors. Anal Chem 87:9696–9701

    Article  CAS  PubMed  Google Scholar 

  138. Pissuwan D, Hobro AJ, Pavillon N, Smith NI (2014) Distribution of label free cationic polymer-coated gold nanorods in live macrophage cells reveals formation of groups of intracellular SERS signals of probe nanoparticles. RSC Adv 4:5536

    Article  CAS  Google Scholar 

  139. Kang JW, So PTC, Dasari RR, Lim D-K (2015) High resolution live cell Raman imaging using subcellular organelle-targeting sers-sensitive gold nanoparticles with highly narrow intra-nanogap. Nano Lett 15:1766–1772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Xu L, Zhao S, Ma W, Wu X, Li S, Kuang H, Wang L, Xu C (2016) Multigaps embedded nanoassemblies enhance in situ Raman spectroscopy for intracellular telomerase activity sensing. Adv Funct Mater 26:1602–1608

    Article  CAS  Google Scholar 

  141. Kaur G, Dufour JM (2012) Cell lines: valuable tools or useless artifacts. Spermatogenesis 2:1–5

    Article  PubMed  PubMed Central  Google Scholar 

  142. Pan C, Kumar C, Bohl S, Klingmueller U, Mann M (2009) Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions. Mol Cell Proteomics 8:443–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Maslak E, Gregorius A, Chlopicki S (2015) Liver sinusoidal endothelial cells (LSECs) function and NAFLD; NO-based therapy targeted to the liver. Pharmacol Rep 67:689–694

    Article  CAS  PubMed  Google Scholar 

  144. Edelberg JM, Aird WC, Wu W, Rayburn H, Mamuya WS, Mercola M, Rosenberg RD (1998) PDGF mediates cardiac microvascular communication. J Clin Invest 102:837–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wayhart JP, Lawson HA (2017) Animal models of metabolic syndrome A2. In: Conn P, Michael BT (eds) Animal models for the study of human disease. 2nd edn. Academic Press, pp 221–243 (Chapter 9)

    Google Scholar 

  146. Sørensen KK, Simon-Santamaria J, McCuskey RS, Smedsrød B (2011) Liver sinusoidal endothelial cells. Compr Physiol 5:1751–1774

    Google Scholar 

  147. Wisse E (1972) An ultrastructural characterization of the endothelial cell in the rat liver sinusoid under normal and various experimental conditions, as a contribution to the distinction between endothelial and Kupffer cells. J Ultrastruct Res 38:528–562

    Article  CAS  PubMed  Google Scholar 

  148. Elvevold K, Smedsrod B, Martinez I (2008) The liver sinusoidal endothelial cell: a cell type of controversial and confusing identity. Am J Physiol Gastrointest Liver Physiol 294:G391–G400

    Article  CAS  PubMed  Google Scholar 

  149. Meyer J, Lacotte S, Morel P, Gonelle-Gispert C, Bühler L (2016) An optimized method for mouse liver sinusoidal endothelial cell isolation. Exp Cell Res 349:291–301

    Article  CAS  PubMed  Google Scholar 

  150. Schie IW, Wu J, Weeks T, Zern MA, Rutledge JC, Huser T (2011) Label-free characterization of rapid lipid accumulation in living primary hepatocytes after exposure to lipoprotein lipolysis products. J Biophotonics 4:425–434

    Article  CAS  PubMed  Google Scholar 

  151. Testerink N, Ajat M, Houweling M, Brouwers JF, Pully VV, van Manen H-J, Otto C, Helms JB, Vaandrager AB (2012) Replacement of retinyl esters by polyunsaturated triacylglycerol species in lipid droplets of hepatic stellate cells during activation. PLoS ONE 7:e34945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kochan K, Kus E, Filipek A, Szafrańska K, Chlopicki S, Baranska M (2017) Label-free spectroscopic characterization of live liver sinusoidal endothelial cells (LSECs) isolated from the murine liver. Analyst 142:1308–1319

    Article  CAS  PubMed  Google Scholar 

  153. Huebert RC, Jagavelu K, Liebl AF, Huang BQ, Splinter PL, LaRusso NF, Urrutia RA (2010) Immortalized liver endothelial cells: a cell culture model for studies of motility and angiogenesis. Lab Invest 90:1770–1781

    Article  PubMed  PubMed Central  Google Scholar 

  154. Brutsaert DL (2003) Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev 83:59–115

    Article  CAS  PubMed  Google Scholar 

  155. Tirziu D, Giordano FJ, Simons M (2010) Cell communications in the heart. Circulation 122:928–937

    Article  PubMed  PubMed Central  Google Scholar 

  156. Lee JF, Barrett-O’Keefe Z, Garten RS, Nelson AD, Ryan JJ, Nativi JN, Richardson RS, Wray DW (2016) Evidence of microvascular dysfunction in heart failure with preserved ejection fraction. Heart 102:278–284

    Article  CAS  PubMed  Google Scholar 

  157. Garlanda C, Parravicini C, Sironi M, DeRossi M, Wainstok de Calmanovici R, Carozzi F, Bussolino F, Colotta F, Mantovani A, Vecchi A (1994) Progressive growth in immunodeficient mice and host cell recruitment by mouse endothelial cells transformed by polyoma middle-sized T antigen: implications for the pathogenesis of opportunistic vascular tumors. Proc Natl Acad Sci U S A 91:7291–7295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Yeo BS, Mädler S, Schmid T, Zhang W, Zenobi R (2008) Tip-enhanced Raman spectroscopy can see more: the case of cytochrome c. J Phys Chem C 112:4867–4873

    Article  CAS  Google Scholar 

  159. Ogawa M, Harada Y, Yamaoka Y, Fujita K, Yaku H, Takamatsu T (2009) Label-free biochemical imaging of heart tissue with high-speed spontaneous Raman microscopy. Biochem Biophys Res Commun 382:370–374

    Article  CAS  PubMed  Google Scholar 

  160. Wood BR, Asghari-Khiavi M, Bailo E, McNaughton D, Deckert V (2012) Detection of nano-oxidation sites on the surface of hemoglobin crystals using tip-enhanced Raman scattering. Nano Lett 12:1555–1560

    Article  CAS  PubMed  Google Scholar 

  161. Kallaway C, Almond LM, Barr H, Wood J, Hutchings J, Kendall C, Stone N (2013) Advances in the clinical application of Raman spectroscopy for cancer diagnostics. Photodiagnosis Photodyn Ther 10:207–219

    Article  CAS  PubMed  Google Scholar 

  162. Galli R, Uckermann O, Koch E, Schackert G, Kirsch M, Steiner G (2013) Effects of tissue fixation on coherent anti-Stokes Raman scattering images of brain. J Biomed Opt 19:071402

    Article  CAS  Google Scholar 

  163. Mariani MM, Lampen P, Popp J, Wood BR, Deckert V (2009) Impact of fixation on in vitro cell culture lines monitored with Raman spectroscopy. Analyst 134:1154–1161

    Article  CAS  PubMed  Google Scholar 

  164. Kong K, Kendall C, Stone N, Notingher I (2015) Raman spectroscopy for medical diagnostics—from in-vitro biofluid assays to in-vivo cancer detection. Adv Drug Deliv Rev 89:121–134

    Article  CAS  PubMed  Google Scholar 

  165. Kendall C, Isabelle M, Bazant-Hegemark F, Hutchings J, Orr L, Babrah J, Baker R, Stone N (2009) Vibrational spectroscopy: a clinical tool for cancer diagnostics. Analyst 134:1029–1045

    Article  CAS  PubMed  Google Scholar 

  166. Dybas J, Marzec KM, Pacia MZ, Kochan K, Czamara K, Chrabąszcz K, Staniszewska-Ślęzak E, Małek K, Barańska M, Kaczor A (2016) Raman spectroscopy as a sensitive probe of soft tissue composition—imaging of cross-sections of various organs vs. single spectra of tissue homogenates. Trends Anal Chem 85:117–127

    Article  CAS  Google Scholar 

  167. Wrobel TP, Marzec KM, Chlopicki S, Maślak E, Jasztal A, Franczyk-Żarów M, Czyżyńska-Cichoń I, Moszkowski T, Kostogrys RB, Baranska M (2015) Effects of cow carbohydrate high protein (LCHP) diet on atherosclerotic plaque phenotype in ApoE/LDLR−/− mice: FT-IR and Raman imaging. Sci Rep 5:14002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kochan K, Chrabaszcz K, Szczur B, Maslak E, Dybasa J, Marzec KM (2016) IR and Raman imaging of murine brains from control and ApoE/LDLR−/− mice with advanced atherosclerosis. Analyst 141:5329–5338

    Article  CAS  PubMed  Google Scholar 

  169. Zhang J, Fan Y, He M, Ma X, Song Y, Liu M, Xu J (2017) Accuracy of Raman spectroscopy in differentiating brain tumor from normal brain tissue. Oncotarget 8:36824–36831

    PubMed  PubMed Central  Google Scholar 

  170. Surmacki J, Musial J, Kordek R, Abramczyk H (2013) Raman imaging at biological interfaces: applications in breast cancer diagnosis. Mol Cancer 12:48

    Article  PubMed  PubMed Central  Google Scholar 

  171. Brozek-Pluska B, Musial J, Kordek R, Bailo E, Dieing T, Abramczyk H (2012) Raman spectroscopy and imaging: applications in human breast cancer diagnosis. Analyst 137:3773–3780

    Article  CAS  PubMed  Google Scholar 

  172. Bratchenko IA, Artemyev DN, Myakinin OO, Khristoforova YA, Moryatov AA, Kozlov SV, Zakharov VP (2017) Combined Raman and autofluorescence ex vivo diagnostics of skin cancer in near-infrared and visible regions. J Biomed Opt 22:27005

    Article  PubMed  Google Scholar 

  173. Magee ND, Beattie JR, Carland C, Davis R, McManus K, Bradbury I, Fennell DA, Hamilton PW, Ennis M, McGarvey JJ, Elborn JS (2010) Raman microscopy in the diagnosis and prognosis of surgically resected nonsmall cell lung cancer. J Biomed Opt 15:026015

    Article  PubMed  CAS  Google Scholar 

  174. Andreou C, Neuschmelting V, Tschaharganeh DF, Huang CH, Oseledchyk A, Iacono P, Karabeber H, Colen RR, Mannelli L, Lowe SW, Kircher MF (2016) Imaging of liver tumors using surface-enhanced Raman scattering nanoparticles. ACS Nano 10:5015–5026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Cm Krishna, Rubina S (2015) Raman spectroscopy in cervical cancers: An update. J Cancer Res Ther 11:10–17

    Article  Google Scholar 

  176. Kamemoto LE, Misra AK, Sharma SK, Goodman MT, Luk H, Dykes AC, Acosta T (2010) Near-infrared micro-Raman spectroscopy for in vitro detection of cervical cancer. Appl Spectrosc 64:255–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Kast RE, Tucker SC, Killian K, Trexler M, Honn KV, Auner GW (2014) Emerging technology: applications of Raman spectroscopy for prostate cancer. Cancer Metastasis Rev 33:673–693

    Article  CAS  PubMed  Google Scholar 

  178. Latka I, Dochow S, Krafft C, Dietzek B, Popp J (2013) Fiber optic probes for linear and nonlinear Raman applications—Current trends and future development. Laser Photonics Rev 7:698–731

    Article  CAS  Google Scholar 

  179. Lui H, Zhao J, McLean D, Zeng H (2012) Real-time Raman spectroscopy for in vivo skin cancer diagnosis. Cancer Res 72:2491–2500

    Article  CAS  PubMed  Google Scholar 

  180. Desroches J, Jermyn M, Pinto M, Picot F, Tremblay MA, Obaid S, Marple E, Urmey K, Trudel D, Soulez G, Guiot MC, Wilson BC, Petrecca K, Leblond F (2018) A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy. Sci Rep 8:1792

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  181. Bergholt MS, Zheng W, Lin K, Ho KY, The M, Yeoh KG, So JBY, Huang Z (2011) In vivo diagnosis of esophageal cancer using image-guided Raman endoscopy and biomolecular modeling. Technol Cancer Res Treat 10:103–112

    Article  CAS  PubMed  Google Scholar 

  182. Bergholt MS, Lin K, Zheng W, Lau DP, Huang Z (2012) In vivo, real-time, transnasal, image-guided Raman endoscopy: defining spectral properties in the nasopharynx and larynx. J Biomed Opt 17:770021

    Article  Google Scholar 

  183. Huang Z, The SK, Zheng W, Lin K, Ho KY, Teh M, Yeoh KG (2010) In vivo detection of epithelial neoplasia in the stomach using image-guided Raman endoscopy. Biosens Bioelectron 26:383–389

    Article  PubMed  CAS  Google Scholar 

  184. Haka AS, Volynskaya Z, Gardecki JA, Nazemi J, Shenk R, Wang N, Dasari RR, Fitzmaurice M, Feld MS (2009) Diagnosing breast cancer using Raman spectroscopy: prospective analysis. J Biomed Opt 14:54023

    Article  CAS  Google Scholar 

  185. Matthäus C, Dochow S, Bergner G, Lattermann A, Romeike BFM, Marple ET, Krafft C, Dietzek B, Brehm BR, Popp J (2012) In vivo characterization of atherosclerotic plaque depositions by Raman-probe spectroscopy and in vitro coherent anti-stokes Raman scattering microscopic imaging on a rabbit model. Anal Chem 84:7845–7851

    Article  PubMed  CAS  Google Scholar 

  186. Huang Z, McWilliams A, Lui H, McLean DI, Lam S, Zeng H (2003) Near-infrared Raman spectroscopy for optical diagnosis of lung cancer. Int J Cancer 107:1047–1052

    Article  CAS  PubMed  Google Scholar 

  187. Krafft C, Sobottka SB, Schackert G, Salzer R (2005) Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors. Analyst 130:1070–1077

    Article  CAS  PubMed  Google Scholar 

  188. Duraipandian S, Zheng W, Ng J, Low JJ, Ilancheran A, Huang Z (2012) Simultaneous fingerprint and high-wavenumber confocal Raman spectroscopy enhances early detection of cervical precancer in vivo. Anal Chem 84:5913–5919

    Article  CAS  PubMed  Google Scholar 

  189. Draga ROP, Grimbergen MCM, Vijverberg PLM, van Swol CFP, Jonges TGN, Kummer JA, Ruud Bosch JLH (2010) In vivo bladder cancer diagnosis by high-volume Raman spectroscopy. Anal Chem 82:5993–5999

    Article  CAS  PubMed  Google Scholar 

  190. Kumar GL, Rucbeck L (eds) (2009) Immunohistochemical (IHC) Staining Methods. Dako North America, Carpinteria

    Google Scholar 

  191. Vendrell M, Maiti KK, Dhaliwal K, Chang Y-T (2013) Surface-enhanced Raman scattering in cancer detection and imaging. Trends Biotechnol 31:249–257

    Article  CAS  PubMed  Google Scholar 

  192. Schlücker S, Küstner B, Punge A, Bonfig R, Marx A, Ströbel P (2006) Immuno-Raman microspectroscopy: in situ detection of antigens in tissue specimens by surface-enhanced Raman scattering. J Raman Spectrosc 37:719–721

    Article  CAS  Google Scholar 

  193. Jehn C, Küstner B, Adam P, Marx A, Ströbel P, Schmuckd C, Schlücker S (2009) Water soluble SERS labels comprising a SAM with dual spacers for controlled bioconjugation. Phys Chem Chem Phys 11:7499–7504

    Article  CAS  PubMed  Google Scholar 

  194. Salehi M, Schneider L, Ströbel P, AMarx A, Packeisend J, Schlücker S (2014) Two-color SERS microscopy for protein co-localization in prostate tissue with primary antibody–protein A/G–gold nanocluster conjugates. Nanoscale 6:2361–2367

    Article  CAS  PubMed  Google Scholar 

  195. Wang X-P, Zhang Y, König M, Papadopoulou E, Walkenfort B, Kasimir-Bauer S, Bankfalvic A, Schlücker S (2016) iSERS microscopy guided by wide field immunofluorescence: analysis of HER2 expression on normal and breast cancer FFPE tissue sections. Analyst 141:5113–5119

    Article  CAS  PubMed  Google Scholar 

  196. Wang Y, Kang S, Khan A, Ruttner G, Leigh SY, Murray M, Abeytunge S, Peterson G, Rajadhyaksha M, Dintzis S, Javid S, Liu JTC (2016) Quantitative molecular phenotyping with topically applied SERS nanoparticles for intraoperative guidance of breast cancer lumpectomy. Sci Rep 6:21242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Quynh LM, Nam NH, Kong K, Nhung NT, Notingher I, Henini M, Luong NH (2016) Surface-enhanced Raman spectroscopy study of 4-atp on gold nanoparticles for basal cell carcinoma fingerprint detection. J Electron Mater 45:2563–2568

    Article  CAS  Google Scholar 

  198. Chen Y, Zheng X, Chen G, He C, Zhu W, Feng S, Xi G, Chen R, Lan F, Zeng H (2011) Immunoassay for LMP1 in nasopharyngeal tissue based on surface-enhanced Raman scattering. Int J Nanomedicine 7:73–82

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malgorzata Baranska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Czamara, K. et al. (2019). Small and Large Molecules Investigated by Raman Spectroscopy. In: Koleżyński, A., Król, M. (eds) Molecular Spectroscopy—Experiment and Theory. Challenges and Advances in Computational Chemistry and Physics, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-01355-4_6

Download citation

Publish with us

Policies and ethics