Skip to main content

Three Lessons on the Topological and Algebraic Hidden Core of Rough Set Theory

  • Chapter
  • First Online:
Algebraic Methods in General Rough Sets

Part of the book series: Trends in Mathematics ((TM))

Abstract

In what follows the reader will find an exposition of the basic, albeit not elementary, connections between Rough Set Theory and relation algebra, topology and algebraic logic.

Many algebraic aspects of Rough Set Theory, are known nowadays. Other are less known, although they are important, for instance because they unveil the “epistemological meaning” of some “unexplained” mathematical features of well-known algebraic structures.

We shall wrap everything in a simple exposition, illustrated by many examples, where just a few basic notions are required. Some new results will help the connection of the topics taken into account.

Important features in Rough Set Theory will be explained by means of notions connecting relation algebra, pre-topological and topological spaces, formal (pre) topological systems, algebraic logic and logic.

Relation algebra provides basic tools for the definition of approximations in general (that is, not confined to particular kind of relations). Indeed, these tools lead to pairs of operators fulfilling Galois adjointness, whose combinations, in turn, provide pre-topological and topological operators, which, in some cases, turn into approximation operators.

Once one has approximation operators, rough sets can be defined. In turn, rough set systems can be made into different logico-algebraic systems, such as Nelson algebras, three-valued Łukasiewicz algebras, Post algebras of order three, Heyting and co-Heyting algebras.

In addition, in the process of approximation, one has to deal with both exact and inexact pieces of information (definable and non-definable sets). Therefore, the concept of local validity comes into picture. It will be extensively discussed because it links the construction of Nelson algebras from Heyting ones with the notions of a Grothendieck topology and a Lawvere-Tierney operator.

As a side effect, we obtain an information-oriented explanation of the above logico-algebraic constructions which usually are given on the basis of pure formal motivations.

The exposition will move from abstract levels (pointless) to concrete levels of analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Often, a lower adjoint is called “left adjoint” and an upper adjoint is called “right adjoint”. We avoid the terms “right” and “left” because they could make confusion with the position of the arguments of the operations on binary relations.

  2. 2.

    A direct proof of point 6 of Facts 3.1 runs as follows. Let \(x\in \mathcal C_R(X\cap Y)\). Therefore, ∃y, x ∈ R(y) and R(y) ⊆ X ∩ Y . It follows that R(y) ⊆ X and R(y) ⊆ Y , so that \(x\in \mathcal C_R(X)\) and \(x\in \mathcal C_R(Y)\) which amounts to \(x\in \mathcal C_R(X)\cap \mathcal C_R(Y)\). Therefore, \(\mathcal C_R(X\cap Y)\subseteq \mathcal C_R(X)\cap \mathcal C_R(Y)\).

  3. 3.

    In the infinite case there can occur a dual situation: there are not enough points to separate properties. In this case the dual operation of T 0-ification is called spatialisation.

  4. 4.

    If H is finite then it has the least dense element. An infinite Heyting algebra, instead, may lack this element.

  5. 5.

    One obtains a Boolean algebra from a Heyting one by applying another Lawvere-Tierney operator, namely B x(p) = (px)⇒x. The congruence relation is a ≡ b iff ax = bx. If x = 0, a ≡ b iff ¬a = ¬b. By definition a is a fixed point of B x if (ax)⇒x ≤ a, so that if x = 0, a is a fixed point if ¬¬a ≤ a, hence if ¬¬a = a.

  6. 6.

    Moreover, by means of ⊔ we have a proof that ¬¬ preserves ⇒:

    $$\displaystyle \begin{aligned} \neg\neg(a\Longrightarrow b)&= \neg(\neg\neg a\wedge\neg b) = \neg(\neg\neg a\wedge\neg\neg\neg b)\\ & = \neg\neg(\neg a\vee\neg\neg b)= \neg a\sqcup(\neg\neg b)\\ & = \neg(\neg\neg a)\sqcup \neg\neg b=\neg\neg a\Longrightarrow\neg\neg b \end{aligned} $$

    The last equation is legal because it is calculated in the Boolean algebra \(\mathcal F_{J^\delta }(\mathbf {H})\) of the regular elements of H.

  7. 7.

    The first proof was presented in [28]. In that paper there is a misprint: ¬(¬B 2 ∪ A 2) instead of (¬B 2 ∪ A 2).

References

  1. Balbes, R., Dwinger, P.: Distributive Lattices. University of Missouri Press, Columbia (1975)

    MATH  Google Scholar 

  2. Banerjee, M.: Algebras from Rough Sets. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough Neural Computing, pp.157–184. Springer, Berlin (2004)

    Chapter  Google Scholar 

  3. Banerjee, M., Chakraborty, M.K.: Rough sets through algebraic logic. Fund. Inform. 28(3–4), 211–221 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Banerjee, M., Chakraborty, M.K.: Rough sets and three-valued Łukasiewicz logic. Fund. Inform. 32, 213–220 (1997)

    MATH  Google Scholar 

  5. Bartol, W., Miró, J., Pióro, K., Rosselló, F.: On the coverings by tolerance classes. Inf. Sci. 166, 193–211 (2004)

    Article  MathSciNet  Google Scholar 

  6. Cattaneo, G.: Abstract approximation spaces for rough theories. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 2. Applications, Case Studies and Software Systems, pp. 59–106. Springer, Berlin (1998)

    Google Scholar 

  7. Cattaneo, G., Ciucci, D.: Heyting Wajsberg algebras as an abstract environment linking fuzzy and rough sets. In: Alpigini, J., Peters, J., Skowron, A., Zhong, N. (eds.) Rough Sets and Current Trends in Computing: Third International Conference, RSCTC 2002. Lecture Notes in Artificial Intelligence, vol. 2475, pp. 77–84. Springer, Berlin (2002)

    Chapter  Google Scholar 

  8. Comer, S.: An algebraic approach to the approximation of information. Fund. Inform. 14, 492–502 (1991)

    MathSciNet  MATH  Google Scholar 

  9. Düntsch, I.: Rough sets and algebras of relations. In: Orłowska, E. (ed.) Incomplete Information: Rough Set Analysis, pp. 95–108. Physica-Verlag, Heidelberg (1998)

    Chapter  Google Scholar 

  10. Düntsch, I., Gegida, G.: Modal-style operators in qualitative data analysis. In: Proceedings of the 2002 IEEE International Conference on Data Mining, pp. 155–162 (2002)

    Google Scholar 

  11. Düntsch, I., Orłowska, E.: Mixing modal and sufficiency operators. Bull. Sect. Logic 28, 99–106 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Epstein, G.: The underlying ground for hypothetical propositions. In: Logic in the Twentieth Century, Scientia, pp. 101–124 (1983)

    Google Scholar 

  13. Epstein, G., Horn, A.: Chain based lattices. Pac. J. Math 55(1), 65–85 (1974)

    Article  MathSciNet  Google Scholar 

  14. Epstein, G., Horn, A.: Logics characterized by subresiduated lattices. Math. Log. Q. 22(1), 199–210 (1976)

    Article  MathSciNet  Google Scholar 

  15. Fourman, M.P., Scott, D.S.: Sheaves and logic. In: Fourman, M.P., Mulvey, C.J., Scott, D.S. (eds.) Applications of Sheaves, Proceedings of the Research Symposium on Applications of Sheaf Theory to Logic, Algebra, and Analysis, Lecture Notes in Computer Science, vol. 753, pp. 302–401. Springer, Berlin (1977)

    Google Scholar 

  16. Greco, S., Matarazzo, B., Słowiński, R.: Dominance-based rough set approach and bipolar abstract rough approximation spaces. In: Chan, C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) Rough Sets and Current Trends in Computing. RSCTC 2008. Lecture Notes in Computer Science, vol. 5306, pp. 31–40. Springer, Berlin (2008)

    Google Scholar 

  17. Järvinen, J.: Knowledge representation and rough sets. Ph.D. Dissertation, University of Turku (1999)

    Google Scholar 

  18. Järvinen, J., Radeleczki, S.: Tolerances induced by irredundant coverings. Fund. Inform. 137, 341–353 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Järvinen, J., Pagliani, P., Radeleczki, S.: Information completeness in Nelson algebras of rough sets induced by quasiorders. Stud. Logica 101(5), 1073–1092 (2013)

    Article  MathSciNet  Google Scholar 

  20. Johnston, P.T.: Conditions related to De Morgan’s law. In: Fourman, M.P., Mulvey, C.J., Scott, D.S. (eds.) Applications of Sheaves, Proceedings of the Research Symposium on Applications of Sheaf Theory to Logic, Algebra, and Analysis. Lecture Notes in Computer Science, vol. 753, pp. 579–491. Springer, Berlin (1977)

    Google Scholar 

  21. Lawvere, F.W.: Introduction to part I. In: Lawvere, F.W., Maurer, C., Wraith, C.G. (eds.) Model Theory and Topoi, pp. 3–14. Springer, Berlin (1975)

    Chapter  Google Scholar 

  22. Lawvere, F.W.: Intrinsic Co-Heyting Boundaries and the Leibniz Rule in Certain Toposes. In: Carboni, A., Pedicchio, M.C., Rosolini, G. (eds.) Category Theory, Lecture Notes in Computer Science, vol. 1488, pp. 279–281. Springer, Berlin (1991)

    Google Scholar 

  23. MacLane, S., Moerdijk, I.: Sheaves in Geometry and Logic. A First Introduction to Topos Theory. Springer, Berlin (1992)

    Google Scholar 

  24. Miglioli, P., Moscato, U., Ornaghi, M., Usberti, G.: A constructivism based on classical truth. Notre Dame J. Formal Logic 30(1), 67–90 (1988)

    Article  MathSciNet  Google Scholar 

  25. Obtułowicz, A.: Rough sets and Heyting algebra valued sets. Bull. Polish Acad. Sci. Math. 35(9–10), 667–671 (1987)

    MathSciNet  MATH  Google Scholar 

  26. Ore, O.: Galois connexions. Trans. Am. Math. Soc. 55, 493–531 (1944)

    Article  MathSciNet  Google Scholar 

  27. Pagliani, P.: Remarks on special lattices and related constructive logics with strong negation. Notre Dame J. Formal Logic 41(4), 515–528 (1990)

    Article  MathSciNet  Google Scholar 

  28. Pagliani, P.: A pure logic-algebraic analysis of rough top and rough bottom equalities. In: Ziarko, W.P. (ed.) Rough Sets, Fuzzy Sets and Knowledge Discovery. Workshops in Computing, pp. 227–236. Springer, Berlin (1994)

    Chapter  Google Scholar 

  29. Pagliani, P.: A modal relation algebra for generalized approximation spaces. In: Tsumoto, S., Kobayashi, S., Yokomori, T., Tanaka, H., Nakamura, A. (eds.) Proceedings of the 4th International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery, pp. 89–96. The University of Tokyo, Tokyo (1996)

    Google Scholar 

  30. Pagliani, P.: Algebraic models and proof analysis: a simple case study. In: Orłowska, E. (ed.) Logic at Work. Essays Dedicated to the Memory of Helena Rasiowa, pp. 651–668. Physica-Verlag, Heidelberg (1998)

    Google Scholar 

  31. Pagliani, P.: Intrinsic co-Heyting boundaries and information incompleteness in Rough Set Analysis. In: Polkowski, L., Skowron, A. (eds.) Rough Sets and Current Trends in Computing. RSCTC 1998. Lecture Notes in Computer Science 13, vol. 1424, pp. 123–130. Springer, Berlin (1998)

    Google Scholar 

  32. Pagliani, P.: Rough set theory and logic-algebraic structures. In: Orłowska, E. (ed.) Incomplete Information: Rough Set Analysis, pp. 109–190. Physica-Verlag, Heidelberg (1998)

    Chapter  Google Scholar 

  33. Pagliani, P.: Concrete neighbourhood systems and formal pretopological spaces. Calcutta Logical Circle Conference on Logic and Artificial Intelligence, Calcutta, India, 13–16 October 2002. Now Ch. 15.14 of [39] 41(4), 515–528 (2002)

    Google Scholar 

  34. Pagliani, P.: Pretopology and dynamic spaces. Fund. Inform. 59(2–3), 221–239 (2004)

    MathSciNet  MATH  Google Scholar 

  35. Pagliani, P.: The relational construction of conceptual patterns. Tools, implementation and theory. In: Kryszkiewicz, M., Cornelis, C., Ciucci, D., Medina-Moreno, J., Motoda, H., Ras, Z. (eds.) Rough Sets and Intelligent Systems Paradigms. Lecture Notes in Computer Science, vol. 8537, pp. 14–27. Springer, Berlin (2014)

    Chapter  Google Scholar 

  36. Pagliani, P.: Covering rough sets and formal topology. A uniform approach through intensional and extensional constructors. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets. Lecture Notes in Computer Science, vol. 10020, pp. 109–145. Springer (2016)

    Google Scholar 

  37. Pagliani, P., Chakraborty, M.K.: Information quanta and approximation spaces. I: non-classical approximation operators. In: Peters, J., Skowron, A. (eds.) Proceedings of the IEEE International Conference on Granular Computing, Beijing, P. R. China, 25–27 July 2005, vol. 2, pp. 605–610. IEEE, Los Alamitos (2005)

    Chapter  Google Scholar 

  38. Pagliani, P., Chakraborty, M.K.: Formal topology and information systems. In: Skowron, A., Peters, J.F., Düntsch, I., Grzymala-Busse, J., Orłowska, E., Polkowski, L. (eds.) Transactions on Rough Sets. Lecture Notes in Computer Science VI, vol. 4374, pp. 253–297. Springer, Berlin (2007)

    Chapter  Google Scholar 

  39. Pagliani, P., Chakraborty, M.K.: A Geometry of Approximation. Springer, Berlin (2008)

    Book  Google Scholar 

  40. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic, Dordrecht (1991)

    Book  Google Scholar 

  41. Pomikała, J., Pomikała, J.A.: The Stone algebra of rough sets. Bull. Polish Acad. Sci. Math. 36, 495–508 (1988)

    MathSciNet  Google Scholar 

  42. Rasiowa, H.: An Algebraic Approach to Non-classical Logics. Kluwer Academic, Dordrecht (1974)

    MATH  Google Scholar 

  43. Reyes, G.E., Zolfaghari, H.: Bi-Heyting algebras, toposes and modalities. J. Philos. Log. 25(1), 25–43 (1996)

    Article  MathSciNet  Google Scholar 

  44. Sambin, G.: Intuitionistic formal spaces - a first communication. In: Skordev, D. (ed.) Mathematical Logic and Its Applications, pp. 187–204. Plenum Press, New York (1987)

    Chapter  Google Scholar 

  45. Sambin, G., Gebellato, S.: A preview of the basic picture: a new perspective on formal topology. In: Altenkirch, T., Reus, B., Naraschewski, W. (eds.) Proceedings of International Workshop on Types for Proofs and Programs, TYPES ’98. Lecture Notes in Computer Science, vol. 1657, pp. 194–207. Springer, Berlin (1999)

    MATH  Google Scholar 

  46. Sen, J., Chakraborty, M.K.: Algebraic structures in the vicinity of pre-rough algebra and their logics. Inf. Sci. 282(20), 296–320 (2014)

    MathSciNet  MATH  Google Scholar 

  47. Sendlewski, A.: Nelson algebras through Heyting ones: I. Stud. Logica 49(1), 105–126 (1990)

    Article  MathSciNet  Google Scholar 

  48. Thomason, R.H.: A semantical study of constructible falsity. Z. Math. Logik Grundlagen Math. 15, 247–257 (1969)

    Article  MathSciNet  Google Scholar 

  49. Wille, R.: Restructuring lattice theory. In: Rival, I. (ed.) Ordered Sets. NATO ASI Series, vol. 83, pp. 445–470. Reidel, Dordrecht (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pagliani, P. (2018). Three Lessons on the Topological and Algebraic Hidden Core of Rough Set Theory. In: Mani, A., Cattaneo, G., Düntsch, I. (eds) Algebraic Methods in General Rough Sets. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-01162-8_4

Download citation

Publish with us

Policies and ethics