Skip to main content

Anesthesia for Open Pulmonary Resection: A Systems Approach

  • Chapter
  • First Online:
Principles and Practice of Anesthesia for Thoracic Surgery

Abstract

Perioperative morbidity and mortality are common following lung resection, with most deaths (>75%) attributed to major adverse pulmonary events (MAPE; including pneumonia, acute lung injury [ALI], and acute respiratory distress syndrome [ARDS]). Perioperative risk can be managed by dividing risk into two broad categories: iatrogenic risk and patient-attributed risk. Clinical care pathways manage iatrogenic risk, while perioperative strategies that allow identification and optimal management of high-risk patients manage patient-attributed risk. These factors will improve outcomes and reduce hospital costs. Patient safety and the delivery of quality care, with emphasis on systems improvement, have emerged as central tasks for healthcare providers. In fact, benchmarking of data will increasingly allow patients to identify institutions that deliver on the value proposition – providing medical care that measures up in safety and quality and yet is delivered at significantly lower costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dulu A, et al. Prevalence and mortality of acute lung injury and ARDS after lung resection. Chest J. 2006;130:73–8.

    Article  Google Scholar 

  2. Tang SS, et al. The mortality from acute respiratory distress syndrome after pulmonary resection is reducing: a 10-year single institutional experience. Eur J Cardiothorac Surg. 2008;34:898–902.

    Article  PubMed  Google Scholar 

  3. Kopec SE, Irwin RS, Umali-Torres CB, Balikian JP, Conlan AA. The postpneumonectomy state. Chest J. 1998;114:1158–84.

    Article  CAS  Google Scholar 

  4. Kutlu CA, Williams EA, Evans TW, Pastorino U, Goldstraw P. Acute lung injury and acute respiratory distress syndrome after pulmonary resection. Ann Thorac Surg. 2000;69:376–80.

    Article  CAS  PubMed  Google Scholar 

  5. Vaporciyan AA, et al. Incidence of major pulmonary morbidity after pneumonectomy: association with timing of smoking cessation. Ann Thorac Surg. 2002;73:420–6.

    Article  PubMed  Google Scholar 

  6. Kozower BD, et al. STS database risk models: predictors of mortality and major morbidity for lung cancer resection. Ann Thorac Surg. 2010;90:875–83.

    Article  PubMed  Google Scholar 

  7. Lighter DE. Advanced performance improvement in healthcare. Sudbury: Jones and Bartlett Publishers; 2010. p. 1–16.

    Google Scholar 

  8. Kohn LT, Corrigan JM, Donaldson MS. To err is human: building a safer health system. Washington, DC: National Academies Press; 2000.

    Google Scholar 

  9. Richardson WC, et al. Crossing the Quality Chasm: A New Health System for the 21st Century. Washington, DC: Institute of Medicine, National Academy Press; 2001.

    Google Scholar 

  10. Starmer AJ, et al. Changes in medical errors after implementation of a handoff program. N Engl J Med. 2014;371:1803–12.

    Article  CAS  PubMed  Google Scholar 

  11. Vincent C, Moorthy K, Sarker SK, Chang A, Darzi AW. Systems approaches to surgical quality and safety: from concept to measurement. Ann Surg. 2004;239:475–82. 00000658-200404000-00007 [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dimick JB, Pronovost PJ, Cowan JA, Lipsett PA. Surgical volume and quality of care for esophageal resection: do high-volume hospitals have fewer complications? Ann Thorac Surg. 2003;75:337–41.

    Article  PubMed  Google Scholar 

  13. Chowdhury MM, Dagash H, Pierro A. A systematic review of the impact of volume of surgery and specialization on patient outcome. Br J Surg. 2007;94:145–61.

    Article  CAS  PubMed  Google Scholar 

  14. Dimick JB, Cowan JA Jr, Ailawadi G, Wainess RM, Upchurch GR Jr. National variation in operative mortality rates for esophageal resection and the need for quality improvement. Arch Surg. 2003;138:1305–9.

    Article  PubMed  Google Scholar 

  15. Dimick JB, Cowan JA Jr, Upchurch GR Jr, Colletti LM. Hospital volume and surgical outcomes for elderly patients with colorectal cancer in the United States. J Surg Res. 2003;114:50–6.

    Article  PubMed  Google Scholar 

  16. Verhoef C, van de Weyer R, Schaapveld M, Bastiaannet E, Plukker JTM. Better survival in patients with esophageal cancer after surgical treatment in university hospitals: a plea for performance by surgical oncologists. Ann Surg Oncol. 2007;14:1678–87.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kozower BD, Stukenborg GJ. The relationship between hospital lung cancer resection volume and patient mortality risk. Ann Surg. 2011;254:1032–7.

    Article  PubMed  Google Scholar 

  18. Wright CD, Kucharczuk JC, O’brien SM, Grab JD, Allen MS. Predictors of major morbidity and mortality after esophagectomy for esophageal cancer: a Society of Thoracic Surgeons General Thoracic Surgery Database risk adjustment model. J Thorac Cardiovasc Surg. 2009;137:587–96.

    Article  PubMed  Google Scholar 

  19. Zehr KJ, Dawson PB, Yang SC, Heitmiller RF. Standardized clinical care pathways for major thoracic cases reduce hospital costs. Ann Thorac Surg. 1998;66:914–9.

    Article  CAS  PubMed  Google Scholar 

  20. Wright CD, et al. Pulmonary lobectomy patient care pathway: a model to control cost and maintain quality. Ann Thorac Surg. 1997;64:299–302.

    Article  CAS  PubMed  Google Scholar 

  21. Khuri SF. Quality, advocacy, healthcare policy, and the surgeon. Ann Thorac Surg. 2002;74:641–9.

    Article  PubMed  Google Scholar 

  22. Khuri SF, Daley J, Henderson WG. The comparative assessment and improvement of quality of surgical care in the Department of Veterans Affairs. Arch Surg. 2002;137:20–7.

    Article  PubMed  Google Scholar 

  23. Brunelli A, Kim AW, Berger KI, Addrizzo-Harris DJ. Physiologic evaluation of the patient with lung cancer being considered for resectional surgery: diagnosis and management of lung cancer: American College of Chest Physicians evidence-based clinical practice guidelines. Chest J. 2013;143:e166S–90S.

    Article  CAS  Google Scholar 

  24. Ries AL, et al. The effects of pulmonary rehabilitation in the national emphysema treatment trial. Chest. 2005;128:3799–809.

    Article  PubMed  Google Scholar 

  25. Ries AL. Pulmonary rehabilitation and COPD. Respir Med. 2005;26:133–41.

    Article  Google Scholar 

  26. Mason DP, et al. Impact of smoking cessation before resection of lung cancer: a Society of Thoracic Surgeons General Thoracic Surgery Database study. Ann Thorac Surg. 2009;88:362–71.

    Article  PubMed  Google Scholar 

  27. Ochroch EA, et al. Long-term pain and activity during recovery from major thoracotomy using thoracic epidural analgesia. Anesthesiology. 2002;97:1234–44.

    Article  PubMed  Google Scholar 

  28. Devereaux P, et al. POISE (PeriOperative ISchemic Evaluation) Investigators. Characteristics and short-term prognosis of perioperative myocardial infarction in patients undergoing noncardiac surgery: a cohort study. Ann Intern Med. 2011;154:523–8.

    Article  CAS  PubMed  Google Scholar 

  29. Nowbar AN, Cole GD, Shun-Shin MJ, Finegold JA, Francis DP. International RCT-based guidelines for use of preoperative stress testing and perioperative beta-blockers and statins in non-cardiac surgery. Int J Cardiol. 2014;172:138–43.

    Article  PubMed  Google Scholar 

  30. Garcia S, et al. Usefulness of revascularization of patients with multivessel coronary artery disease before elective vascular surgery for abdominal aortic and peripheral occlusive disease. Am J Cardiol. 2008;102:809–13.

    Article  PubMed  Google Scholar 

  31. Garcia S, McFalls EO. CON: preoperative coronary revascularization in high-risk patients undergoing vascular surgery. Anesth Analg. 2008;106:764–6.

    Article  PubMed  Google Scholar 

  32. McFalls EO, et al. Predictors and outcomes of a perioperative myocardial infarction following elective vascular surgery in patients with documented coronary artery disease: results of the CARP trial. Eur Heart J. 2008;29:394–401.

    Article  CAS  PubMed  Google Scholar 

  33. Beattie WS, et al. Acute surgical anemia influences the cardioprotective effects of beta-blockade: a single-center, propensity-matched cohort study. Anesthesiology. 2010;112:25–33. https://doi.org/10.1097/ALN.0b013e3181c5dd81. 00000542-201001000-00013 [pii].

    Article  PubMed  Google Scholar 

  34. Hindler K, et al. Improved postoperative outcomes associated with preoperative statin therapy. Anesthesiology. 2006;105:1260–72; quiz 1289–90, 00000542-200612000-00027 [pii].

    Article  CAS  PubMed  Google Scholar 

  35. Schouten O, et al. Fluvastatin and perioperative events in patients undergoing vascular surgery. N Engl J Med. 2009;361:980–9.

    Article  CAS  PubMed  Google Scholar 

  36. Amar D, et al. Statin use is associated with a reduction in atrial fibrillation after noncardiac thoracic surgery independent of C-reactive protein. Chest. 2005;128:3421–7. 128/5/3421 [pii]. https://doi.org/10.1378/chest.128.5.3421.

    Article  CAS  PubMed  Google Scholar 

  37. Amar D. Beta-adrenergic blocker withdrawal confounds the benefits of epidural analgesia with sympathectomy on supraventricular arrhythmias after cardiac surgery. Anesth Analg. 2002;95:1119, author reply 1119.

    Article  PubMed  Google Scholar 

  38. Schouten O, et al. Effect of statin withdrawal on frequency of cardiac events after vascular surgery. Am J Cardiol. 2007;100:316–20. S0002-9149(07)00718-7 [pii]. https://doi.org/10.1016/j.amjcard.2007.02.093.

    Article  CAS  PubMed  Google Scholar 

  39. Rebound risk: aspirin and statin withdrawal. Consum Rep. 2005;70:48.

    Google Scholar 

  40. Collet JP, Montalescot G. Optimizing long-term dual aspirin/clopidogrel therapy in acute coronary syndromes: when does the risk outweigh the benefit? Int J Cardiol. 2009;133:8–17. S0167-5273(09)00013-8 [pii]. https://doi.org/10.1016/j.ijcard.2008.12.202.

    Article  PubMed  Google Scholar 

  41. Ding X, et al. A comparison of the analgesia efficacy and side effects of paravertebral compared with epidural blockade for thoracotomy: an updated meta-analysis. PLoS One. 2014;9:e96233.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Samain E, et al. [Monitoring expired oxygen fraction in preoxygenation of patients with chronic obstructive pulmonary disease]. Ann Fr Anesth Reanim. 2002;21:14–9.

    Google Scholar 

  43. Servin FS, Billard V. Remifentanil and other opioids. Handb Exp Pharmacol. 2008;(182):283–311.

    Google Scholar 

  44. Failor E, Bowdle A, Jelacic S, Togashi K. High-fidelity simulation of lung isolation with double-lumen endotracheal tubes and bronchial blockers in anesthesiology resident training. J Cardiothorac Vasc Anesth. 2014;28:865–9.

    Article  PubMed  Google Scholar 

  45. Slinger P. Update on anesthetic management for pneumonectomy. Curr Opin Anaesthesiol. 2009;22:31–7.

    Article  PubMed  Google Scholar 

  46. Bigatello LM, Allain R, Gaissert HA. Acute lung injury after pulmonary resection. Minerva Anestesiol. 2004;70:159–66.

    CAS  PubMed  Google Scholar 

  47. Michelet P, et al. Protective ventilation influences systemic inflammation after esophagectomy: a randomized controlled study. Anesthesiology. 2006;105:911–9. 00000542-200611000-00011 [pii].

    Article  PubMed  Google Scholar 

  48. Choi G, et al. Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents alveolar coagulation in patients without lung injury. Anesthesiology. 2006;105:689–95. 00000542-200610000-00013 [pii].

    Article  PubMed  Google Scholar 

  49. Determann RM, et al. Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without acute lung injury: a preventive randomized controlled trial. Crit Care. 2010;14:R1. cc8230 [pii]. https://doi.org/10.1186/cc8230.

    Article  PubMed  PubMed Central  Google Scholar 

  50. De Conno E, et al. Anesthetic-induced improvement of the inflammatory response to one-lung ventilation. Anesthesiology. 2009;110:1316–26.

    Article  PubMed  CAS  Google Scholar 

  51. Brassard C, Lohser J, Donati F, Bussieres J. Step-by-step clinical management of one-lung ventilation: continuing professional development. Can J Anesth. 2014;61:1003–21.

    Article  Google Scholar 

  52. Swenson ER. Hypoxic pulmonary vasoconstriction. High Alt Med Biol. 2013;14:101–10.

    Article  PubMed  Google Scholar 

  53. Ward J, McMurtry I. Mechanisms of hypoxic pulmonary vasoconstriction and theirroles in pulmonary hypertension: new findings for an old problem. Curr Opin Pharmacol. 2009;9:1–10.

    Article  CAS  Google Scholar 

  54. Dunham-Snary KJ, et al. Hypoxic pulmonary vasoconstriction: from molecular mechanisms to medicine. Chest. 2017;151:181–92.

    Article  PubMed  Google Scholar 

  55. Aaronson PI, et al. Hypoxic pulmonary vasoconstriction: mechanisms and controversies. J Physiol. 2006;570:53–8.

    Article  CAS  PubMed  Google Scholar 

  56. Rhodes CJ, Davidson A, Gibbs JSR, Wharton J, Wilkins MR. Therapeutic targets in pulmonary arterial hypertension. Pharmacol Ther. 2009;121:69–88.

    Article  CAS  PubMed  Google Scholar 

  57. Weigand L, Sylvester JT, Shimoda LA. Mechanisms of endothelin-1-induced contraction in pulmonary arteries from chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol. 2006;290:L284–90.

    Article  CAS  PubMed  Google Scholar 

  58. Jernigan NL, Walker BR, Resta TC. Chronic hypoxia augments protein kinase G-mediated Ca2+ desensitization in pulmonary vascular smooth muscle through inhibition of RhoA/Rho kinase signaling. Am J Physiol Lung Cell Mol Physiol. 2004;287:L1220–9.

    Article  CAS  PubMed  Google Scholar 

  59. Yamamoto Y, et al. Role of airway nitric oxide on the regulation of pulmonary circulation by carbon dioxide. J Appl Physiol. 2001;91:1121–30.

    Article  CAS  PubMed  Google Scholar 

  60. Nagendran J, Stewart K, Hoskinson M, Archer SL. An anesthesiologist’s guide to hypoxic pulmonary vasoconstriction: implications for managing single-lung anesthesia and atelectasis. Curr Opin Anaesthesiol. 2006;19:34–43.

    Article  PubMed  Google Scholar 

  61. Abe K, Shimizu T, Takashina M, Shiozaki H, Yoshiya I. The effects of propofol, isoflurane, and sevoflurane on oxygenation and shunt fraction during one-lung ventilation. Anesth Analg. 1998;87:1164–9.

    CAS  PubMed  Google Scholar 

  62. Pruszkowski O, et al. Effects of propofol vs sevoflurane on arterial oxygenation during one-lung ventilation. Br J Anaesth. 2007;98:539–44.

    Article  CAS  PubMed  Google Scholar 

  63. Popping DM, Elia N, Marret E, Remy C, Tramer MR. Protective effects of epidural analgesia on pulmonary complications after abdominal and thoracic surgery: a meta-analysis. Arch Surg. 2008;143:990–9; discussion 1000.

    Article  PubMed  Google Scholar 

  64. Groeben H. Epidural anesthesia and pulmonary function. J Anesth. 2006;20:290–9.

    Article  PubMed  Google Scholar 

  65. Moraca RJ, Sheldon DG, Thirlby RC. The role of epidural anesthesia and analgesia in surgical practice. Ann Surg. 2003;238:663–73.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kehlet H, Wilmore DW. Multimodal strategies to improve surgical outcome. Am J Surg. 2002;183:630–41.

    Article  PubMed  Google Scholar 

  67. Grass JA. The role of epidural anesthesia and analgesia in postoperative outcome. Anesthesiol Clin North Am. 2000;18:407–28.

    Article  CAS  PubMed  Google Scholar 

  68. De Cosmo G, Aceto P, Gualtieri E, Congedo E. Analgesia in thoracic surgery: review. Minerva Anestesiol. 2009;75:393–400.

    PubMed  Google Scholar 

  69. Guay J. The benefits of adding epidural analgesia to general anesthesia: a metaanalysis. J Anesth. 2006;20:335–40.

    Article  PubMed  Google Scholar 

  70. Holte K, Kehlet H. Effect of postoperative epidural analgesia on surgical outcome. Minerva Anestesiol. 2002;68:157–61.

    CAS  PubMed  Google Scholar 

  71. Lewis KS, Whipple JK, Michael KA, Quebbeman EJ. Effect of analgesic treatment on the physiological consequences of acute pain. Am J Hosp Pharm. 1994;51:1539–54.

    CAS  PubMed  Google Scholar 

  72. Kehlet H. The stress response to surgery: release mechanisms and the modifying effect of pain relief. Acta Chir Scand Suppl. 1989;550:22–8.

    CAS  PubMed  Google Scholar 

  73. Hahnenkamp K, Herroeder S, Hollmann MW. Regional anaesthesia, local anaesthetics and the surgical stress response. Best Pract Res Clin Anaesthesiol. 2004;18:509–27.

    Article  CAS  PubMed  Google Scholar 

  74. Yeager MP, Glass DD, Neff RK, Brinck-Johnsen T. Epidural anesthesia and analgesia in high-risk surgical patients. Anesthesiology. 1987;66:729–36.

    Article  CAS  PubMed  Google Scholar 

  75. Clemente A, Carli F. The physiological effects of thoracic epidural anesthesia and analgesia on the cardiovascular, respiratory and gastrointestinal systems. Minerva Anestesiol. 2008;74:549–63.

    CAS  PubMed  Google Scholar 

  76. Bromage P. Spirometery in assessment of analgesia after abdominal surgery. Br Med J. 1955;2:589–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Spray SB, Zuidema GD, Cameron JL. Aspiration pneumonia; incidence of aspiration with endotracheal tubes. Am J Surg. 1976;131:701–3.

    Article  CAS  PubMed  Google Scholar 

  78. Sackner MA, Hirsch J, Epstein S. Effect of cuffed endotracheal tubes on tracheal mucous velocity. Chest. 1975;68:774–7.

    Article  CAS  PubMed  Google Scholar 

  79. Chaney MA. Intrathecal and epidural anesthesia and analgesia for cardiac surgery. Anesth Analg. 2006;102:45–64.

    Article  CAS  PubMed  Google Scholar 

  80. Riedel BJ, Wright IG. Epidural anesthesia in coronary artery bypass grafting surgery. Curr Opin Cardiol. 1997;12:515–21.

    Article  CAS  PubMed  Google Scholar 

  81. Gottschalk A, Cohen SP, Yang S, Ochroch EA. Preventing and treating pain after thoracic surgery. Anesthesiology. 2006;104:594–600.

    Article  PubMed  Google Scholar 

  82. Grape S, Tramer MR. Do we need preemptive analgesia for the treatment of postoperative pain? Best Pract Res Clin Anaesthesiol. 2007;21:51–63.

    Article  PubMed  Google Scholar 

  83. Pogatzki-Zahn EM, Zahn PK. From preemptive to preventive analgesia. Curr Opin Anaesthesiol. 2006;19:551–5.

    Article  PubMed  Google Scholar 

  84. Ochroch EA, Gottschalk A. Impact of acute pain and its management for thoracic surgical patients. Thorac Surg Clin. 2005;15:105–21.

    Article  PubMed  Google Scholar 

  85. George MJ. The site of action of epidurally administered opioids and its relevance to postoperative pain management. Anaesthesia. 2006;61:659–64.

    Article  CAS  PubMed  Google Scholar 

  86. Davies RG, Myles PS, Graham JM. A comparison of the analgesic efficacy and side-effects of paravertebral vs epidural blockade for thoracotomy – a systematic review and meta-analysis of randomized trials. [erratum appears in Br J Anaesth. 2007;99(5):768]. British Journal of Anaesthesia. 2006;96:418–26.

    Google Scholar 

  87. Joshi GP, et al. A systematic review of randomized trials evaluating regional techniques for postthoracotomy analgesia. Anesth Analg. 2008;107:1026–40.

    Article  CAS  PubMed  Google Scholar 

  88. Sugasawa Y, et al. Effects of sevoflurane and propofol on pulmonary inflammatory responses during lung resection. J Anesth. 2012;26:62–9.

    Article  PubMed  Google Scholar 

  89. Chong PC, et al. Substantial variation of both opinions and practice regarding perioperative fluid resuscitation. Can J Surg. 2009;52:207–14.

    PubMed  PubMed Central  Google Scholar 

  90. Turnage WS, Lunn JJ. Postpneumonectomy pulmonary edema. A retrospective analysis of associated variables. Chest. 1993;103:1646–50.

    Article  CAS  PubMed  Google Scholar 

  91. Jackson TA, et al. Case 5-2007 postoperative complications after pneumonectomy: clinical conference. J Cardiothorac Vasc Anesth. 2007;21:743–51.

    Article  PubMed  Google Scholar 

  92. Jordan S, Mitchell JA, Quinlan GJ, Goldstraw P, Evans TW. The pathogenesis of lung injury following pulmonary resection. Eur Respir J. 2000;15:790–9.

    Article  CAS  PubMed  Google Scholar 

  93. Polubinska A, Breborowicz A, Staniszewski R, Oreopoulos DG. Normal saline induces oxidative stress in peritoneal mesothelial cells. J Pediatr Surg. 2008;43:1821–6.

    Article  PubMed  Google Scholar 

  94. Westphal M, et al. Hydroxyethyl starches: different products--different effects. Anesthesiology. 2009;111:187–202.

    Article  CAS  PubMed  Google Scholar 

  95. Boldt J. Modern rapidly degradable hydroxyethyl starches: current concepts. Anesth Analg. 2009;108:1574–82.

    Article  PubMed  Google Scholar 

  96. Boldt J. Saline versus balanced hydroxyethyl starch: does it matter? Curr Opin Anaesthesiol. 2008;21:679–83.

    Article  PubMed  Google Scholar 

  97. Ueda H, Iwasaki A, Kusano T, Shirakusa T. Thoracotomy in patients with liver cirrhosis. Scand J Thorac Cardiovasc Surg. 1994;28:37–41.

    Article  CAS  PubMed  Google Scholar 

  98. Ceyhan B, Celikel T. Serum-effusion albumin gradient in separation of transudative and exudative pleural effusions.[comment]. Chest. 1994;105:974–5.

    Article  CAS  PubMed  Google Scholar 

  99. Zarychanski R, et al. Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis. JAMA. 2013;309:678–88.

    Article  CAS  PubMed  Google Scholar 

  100. Taylor C, et al. Hydroxyethyl starch versus saline for resuscitation of patients in intensive care: long-term outcomes and cost-effectiveness analysis of a cohort from CHEST. Lancet Respir Med. 2016;4:818–25.

    Article  CAS  PubMed  Google Scholar 

  101. Ishikawa S, Griesdale DE, Lohser J. Acute kidney injury after lung resection surgery: incidence and perioperative risk factors. Anesth Analg. 2012;114:1256–62.

    Article  PubMed  Google Scholar 

  102. Older P, Hall A, Hader R. Cardiopulmonary exercise testing as a screening test for perioperative management of major surgery in the elderly. Chest. 1999;116:355–62.

    Article  CAS  PubMed  Google Scholar 

  103. Jordan S, Evans TW. Predicting the need for intensive care following lung resection. Thorac Surg Clin. 2008;18:61–9.

    Article  PubMed  Google Scholar 

  104. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  PubMed  Google Scholar 

  105. Travis WD, et al. The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol. 2015;10:1243–60.

    Article  PubMed  Google Scholar 

  106. Maggiore C, et al. Histological classification of lung cancer. Rays. 2004;29:353–5.

    PubMed  Google Scholar 

  107. Lortet-Tieulent J, et al. International trends in lung cancer incidence by histological subtype: adenocarcinoma stabilizing in men but still increasing in women. Lung Cancer. 2014;84:13–22.

    Article  CAS  PubMed  Google Scholar 

  108. Houston KA, Henley SJ, Li J, White MC, Richards TB. Patterns in lung cancer incidence rates and trends by histologic type in the United States, 2004–2009. Lung Cancer. 2014;86:22–8.

    Article  PubMed  Google Scholar 

  109. Beckles MA, Spiro SG, Colice GL, Rudd RM. Initial evaluation of the patient with lung cancer: symptoms, signs, laboratory tests, and paraneoplastic syndromes. Chest. 2003;123:97S–104S.

    Article  PubMed  Google Scholar 

  110. Amer KM, Ibrahim NB, Forrester-Wood CP, Saad RA, Scanlon M. Lung carcinoid related Cushing’s syndrome: report of three cases and review of the literature. Postgrad Med J. 2001;77:464–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Radulescu D, Pripon S, Bunea D, Ciuleanu TE, Radulescu LI. Endocrine paraneoplastic syndromes in small cell lung carcinoma. Two case reports. J BUON. 2007;12:411–4.

    CAS  PubMed  Google Scholar 

  112. Gerber RB, Mazzone P, Arroliga AC. Paraneoplastic syndromes associated with bronchogenic carcinoma. Clin Chest Med. 2002;23:257–64.

    Article  PubMed  Google Scholar 

  113. Pourmand R. Lambert-eaton myasthenic syndrome. Front Neurol Neurosci. 2009;26:120–5.

    Article  CAS  PubMed  Google Scholar 

  114. Darnell RB, Posner JB. Paraneoplastic syndromes affecting the nervous system. Semin Oncol. 2006;33:270–98.

    Article  PubMed  Google Scholar 

  115. D’addario G, et al. Platinum-based versus non-platinum-based chemotherapy in advanced non-small-cell lung cancer: a meta-analysis of the published literature. J Clin Oncol. 2005;23:2926–36.

    Article  PubMed  CAS  Google Scholar 

  116. Endo C, et al. Surgical treatment of stage I non-small cell lung carcinoma. Ann Thorac Cardiovasc Surg. 2003;9:283–9.

    PubMed  Google Scholar 

  117. Goldstraw P, et al. The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours. J Thorac Oncol. 2007;2:706–14.

    Article  PubMed  Google Scholar 

  118. Tsao M-S, et al. Subtype classification of lung adenocarcinoma predicts benefit from adjuvant chemotherapy in patients undergoing complete resection. J Clin Oncol. 2015;33:3439–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Der SD, et al. Validation of a histology-independent prognostic gene signature for early-stage, non–small-cell lung cancer including stage IA patients. J Thorac Oncol. 2014;9:59–64.

    Article  CAS  PubMed  Google Scholar 

  120. Fukuoka M, et al. Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non–small-cell lung cancer in Asia (IPASS). J Clin Oncol. 2011;29:2866–74.

    Article  CAS  PubMed  Google Scholar 

  121. Solomon BJ, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 2014;371:2167–77.

    Article  PubMed  CAS  Google Scholar 

  122. Chambers SK, et al. A systematic review of the impact of stigma and nihilism on lung cancer outcomes. BMC Cancer. 2012;12:184.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Gottschalk A, Sharma S, Ford J, Durieux ME, Tiouririne M. The role of the perioperative period in recurrence after cancer surgery. Anesth Analg. 2010;110:1636–43.

    Article  PubMed  Google Scholar 

  124. Myles PS, et al. Perioperative epidural analgesia for major abdominal surgery for cancer and recurrence-free survival: randomised trial. BMJ. 2011;342:d1491.

    Article  PubMed  Google Scholar 

  125. Nielsen SF, Nordestgaard BG, Bojesen SE. Statin use and reduced cancer-related mortality. N Engl J Med. 2012;367:1792–802.

    Article  CAS  PubMed  Google Scholar 

  126. Singh S, Singh AG, Singh PP, Murad MH, Iyer PG. Statins are associated with reduced risk of esophageal cancer, particularly in patients with Barrett’s esophagus: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2013;11:620–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Pelaia G, et al. Effects of statins and farnesyl transferase inhibitors on ERK phosphorylation, apoptosis and cell viability in non-small lung cancer cells. Cell Prolif. 2012;45:557–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Khurana V, Bejjanki HR, Caldito G, Owens MW. Statins reduce the risk of lung cancer in humans: a large case-control study of US veterans. Chest. 2007;131:1282–8. 131/5/1282 [pii]. https://doi.org/10.1378/chest.06-0931.

    Article  PubMed  Google Scholar 

  129. Rothwell PM, et al. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet. 2011;377:31–41.

    Article  CAS  PubMed  Google Scholar 

  130. Norman PH, et al. A possible association between aprotinin and improved survival after radical surgery for mesothelioma. Cancer. 2009;115:833–41. https://doi.org/10.1002/cncr.24108.

    Article  CAS  PubMed  Google Scholar 

  131. Norman P. Rofecoxib provides significant improvement in survival following lung resection for cancer. Anesthesiology. 2008;109:A1586.

    Google Scholar 

  132. Landreneau RJ, et al. Recurrence and survival outcomes after anatomic segmentectomy versus lobectomy for clinical stage I non–small-cell lung cancer: a propensity-matched analysis. J Clin Oncol. 2014;32:2449–55.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Allen MS, et al. Morbidity and mortality of major pulmonary resections in patients with early-stage lung cancer: initial results of the randomized, prospective ACOSOG Z0030 trial. Ann Thorac Surg. 2006;81:1013–9; discussion 1019–20, S0003-4975(05)01175-6 [pii]. https://doi.org/10.1016/j.athoracsur.2005.06.066.

    Article  PubMed  Google Scholar 

  134. Falcoz P-E, et al. Video-assisted thoracoscopic surgery versus open lobectomy for primary non-small-cell lung cancer: a propensity-matched analysis of outcome from the European Society of Thoracic Surgeon database. Eur J Cardiothorac Surg. 2016;49:602–9.

    Article  PubMed  Google Scholar 

  135. Bendixen M, Jørgensen OD, Kronborg C, Andersen C, Licht PB. Postoperative pain and quality of life after lobectomy via video-assisted thoracoscopic surgery or anterolateral thoracotomy for early stage lung cancer: a randomised controlled trial. Lancet Oncol. 2016;17:836–44.

    Article  PubMed  Google Scholar 

  136. Kent M, et al. Open, video-assisted thoracic surgery, and robotic lobectomy: review of a national database. Ann. Thorac. Surg. 2014;97:236–44.

    Article  PubMed  Google Scholar 

  137. O’doherty A, West M, Jack S, Grocott M. Preoperative aerobic exercise training in elective intra-cavity surgery: a systematic review. Br J Anaesth. 2013;110:679–89.

    Article  PubMed  Google Scholar 

  138. Kozian A, Schilling T. Protective ventilatory approaches to one-lung ventilation: more than reduction of tidal volume. Curr Anesthesiology Rep. 2014;4:150–9.

    Article  Google Scholar 

  139. Licker M, Fauconnet P, Villiger Y, Tschopp JM. Acute lung injury and outcomes after thoracic surgery. Curr Opin Anaesthesiol. 2009;22:61–7. https://doi.org/10.1097/ACO.0b013e32831b466c. 00001503-200902000-00012 [pii].

    Article  PubMed  Google Scholar 

  140. Chau EHL, Slinger P. Seminars in cardiothoracic and vascular anesthesia. Los Angeles: SAGE Publications Sage CA. p. 36–44.

    Google Scholar 

  141. Madani A, et al. An enhanced recovery pathway reduces duration of stay and complications after open pulmonary lobectomy. Surgery. 2015;158:899–910.

    Article  PubMed  Google Scholar 

  142. Ludwig C, Stoelben E, Olschewski M, Hasse J. Comparison of morbidity, 30-day mortality, and long-term survival after pneumonectomy and sleeve lobectomy for non–small cell lung carcinoma. Ann Thorac Surg. 2005;79:968–73.

    Article  PubMed  Google Scholar 

  143. Finks JF, Osborne NH, Birkmeyer JD. Trends in hospital volume and operative mortality for high-risk surgery. N Engl J Med. 2011;364:2128–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zeldin R, Normandin D, Landtwing D, Peters R. Postpneumonectomy pulmonary edema. J Thorac Cardiovasc Surg. 1984;87:359–65.

    CAS  PubMed  Google Scholar 

  145. Foroulis CN, et al. Study on the late effect of pneumonectomy on right heart pressures using Doppler echocardiography. Eur J Cardiothorac Surg. 2004;26:508–14.

    Article  PubMed  Google Scholar 

  146. Fernández-Pérez ER, Keegan MT, Brown DR, Hubmayr RD, Gajic O. Intraoperative tidal volume as a risk factor for respiratory failure after pneumonectomy. Anesthesiology. 2006;105:14–8.

    Article  PubMed  Google Scholar 

  147. Schilling T, et al. The pulmonary immune effects of mechanical ventilation in patients undergoing thoracic surgery. Anesth Analg. 2005;101:957–65.

    Article  PubMed  Google Scholar 

  148. Cerfolio RJ, et al. Lung resection in patients with compromised pulmonary function. Ann Thorac Surg. 1996;62:348–51.

    Article  CAS  PubMed  Google Scholar 

  149. McGlade DP, Slinger PD. The elective combined use of a double lumen tube and endobronchial blocker to provide selective lobar isolation for lung resection following contralateral lobectomy. Anesthesiology. 2003;99:1021–2.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Andrew Ochroch .

Editor information

Editors and Affiliations

Appendices

Clinical Case Discussion

Case: A 68-year-old male presents for anesthesia. He has a 40-pack-year smoking history, hypertension controlled with diltiazem, and hypercholesterolemia controlled with simvastatin. He gives no history of exertional angina. The chest X-ray indicates a mass in the left upper lobe (Fig. 23.5), with absence of metastatic disease as assessed by computerized tomography and by a nuclear bone scan. Pulmonary function testing shows impaired function, characteristic of moderate COPD, with a negligible reversible component and a predicted postoperative FEV1 of 48%.

Fig. 23.5
figure 5

Chest X-ray demonstrating a carcinoma of the left upper lobe

Previous diagnostic bronchoscopy revealed encroachment of a non-small cell lung cancer onto the left main stem bronchus. Consequently, he is now scheduled for a bronchoscopy, mediastinoscopy and left upper lobectomy with sleeve resection, and reattachment of the left lower lobe.

Questions

  1. 1.

    How does the mediastinoscopy alter perioperative management?

  2. 2.

    What airway management technique would be optimal?

  3. 3.

    What invasive monitoring is necessary?

  4. 4.

    Is there an optimal analgesic regimen?

  5. 5.

    Can perioperative fluid management affect outcome?

  6. 6.

    What ventilation strategy would promote optimal outcome?

Discussion

Given the rarity of blood loss requiring blood transfusion, an 18- or 16-gauge intravenous catheter, preferably placed in the nondependent hand, wrist, or forearm, would be appropriate. It is best to avoid the antecubital veins as the arms are bent at 90° when the patient is positioned in a lateral decubitus position, and this will hamper flow of the intravenous fluids. In anticipation of continuation to thoracotomy after mediastinoscopy, a thoracic epidural (alternatively, a paravertebral block) is placed in the T5–T8 region prior to induction. Standard noninvasive monitors will be used, with ECG leads placed as for any median sternotomy, thereby allowing the entire chest to be prepped in a sterile fashion in case an emergent sternotomy is required due to massive bleeding resulting from the mediastinoscopy.

After induction, tailored to the patient, the airway is secured using an 8.0-mm single-lumen endotracheal tube to facilitate bronchoscopy. A LMA can be used for bronchoscopy if mediastinoscopy is not required. The endotracheal tube is usually brought out to the side of the mouth closest to the anesthesia machine once the bed is turned 90° for mediastinoscopy.

Given the absence of significant cardiac disease, invasive monitoring, with placement of an arterial line, can be deferred until after the mediastinoscopy is completed, and the decision is made to proceed to a thoracotomy – based on the absence of mediastinal lymph node involvement by the cancer. Placement of the arterial line is preferred in the dependent radial artery. This allows vigilant hemodynamic monitoring since acute hemodynamic embarrassment often occurs during surgical manipulation and due to the risk of catastrophic pulmonary vasculature injury. Significant fluctuations in blood pressure are especially seen with left-sided procedures where compression of the heart may occur during surgical manipulation.

A right-sided DLT would be of greater advantage in this case. Since a thoracotomy with sleeve resection requires surgical reimplantation of the left lower lobe bronchus (Fig. 23.3), a left-sided DLT may hamper optimal surgical exposure. If intubation is profoundly difficult, to the point where even changing the endotracheal tube over a tube changer would place the patient at significant risk, then alternative strategies including placement of a left main stem bronchial blocker or advancement of the single-lumen endotracheal tube into the right main stem bronchus should be considered.

Clear communication between the surgical and anesthetic team is essential if the pulmonary artery requires resection and reconstruction. In this case blood products should be readily available in the operating room, and steps to reduce the pulmonary artery pressure should be implemented. Such steps may include increased oxygenation (FiO2, 100%), moderate hypocarbia (PaCO2, 30–35 mmHg), an appropriately “deep” level of anesthesia, minimized use of phenylephrine (consider vasopressin if blood pressure is low), and inhaled epoprostenol therapy to the ventilated lung.

Timing of initiation of the epidural and the choice of neuraxial medications remains controversial. A common practice is to initiate the epidural prior to induction so that inhalational anesthetics can be reduced to levels where HPV is not hampered. The intraoperative use of the epidural also helps to minimize the use of systemic opioids to reduce the risk of postoperative respiratory depression. Typically, more concentrated local anesthetics (± opioids) are used intraoperatively and more dilute combinations of local anesthetics and opioids used postoperatively.

The management of perioperative fluid therapy remains a controversy without conclusive data to guide treatment. The origins of the controversy stem from the significant risk of mortality from patients who develop ALI after thoracic surgery, in particular, those that develop post-pneumonectomy pulmonary edema. Typical guidelines suggest minimizing crystalloid therapy to 1.0–1.5 L, as this may help to reduce post-lobectomy pulmonary edema and facilitate early postoperative extubation.

Ventilation parameters during OLV typically strive to reduce the risk of ALI associated with barotrauma or volutrauma through tidal volume reduction (<6 mL/kg), respiratory rate > 10 breaths per minute, I:E ratio of 1:2, and peak inspiratory pressure < 25 mmHg. Such a protective ventilatory strategy aims to maintain baseline CO2 levels or tolerate permissive hypercapnia (pH >7.25) rather than mild hypocapnia. Importantly, prolonged positive-pressure ventilation may hamper the tenuous blood supply of the sleeve anastomosis and increase the risk for a BPF and its associated complications. As such, this necessitates that the overall anesthetic technique be tailored to afford prompt and comfortable extubation of the patient.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ochroch, E.A., Wright, G.M., Riedel, B.J.C.J. (2019). Anesthesia for Open Pulmonary Resection: A Systems Approach. In: Slinger, P. (eds) Principles and Practice of Anesthesia for Thoracic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-00859-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00859-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00858-1

  • Online ISBN: 978-3-030-00859-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics