Skip to main content

FastNet: Fast and Accurate Statistical Inference of Phylogenetic Networks Using Large-Scale Genomic Sequence Data

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11183))

Abstract

An emerging discovery in phylogenomics is that interspecific gene flow has played a major role in the evolution of many different organisms. To what extent is the Tree of Life not truly a tree reflecting strict “vertical” divergence, but rather a more general graph structure known as a phylogenetic network which also captures “horizontal” gene flow? The answer to this fundamental question not only depends upon densely sampled and divergent genomic sequence data, but also computational methods which are capable of accurately and efficiently inferring phylogenetic networks from large-scale genomic sequence datasets. Recent methodological advances have attempted to address this gap. However, in the 2016 performance study of Hejase and Liu, state-of-the-art methods fell well short of the scalability requirements of existing phylogenomic studies.

The methodological gap remains: how can phylogenetic networks be accurately and efficiently inferred using genomic sequence data involving many dozens or hundreds of taxa? In this study, we address this gap by proposing a new phylogenetic divide-and-conquer method which we call FastNet. We conduct a performance study involving a range of evolutionary scenarios, and we demonstrate that FastNet outperforms state-of-the-art methods in terms of computational efficiency and topological accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abbott, R.J., Rieseberg, L.H.: Hybrid speciation. In: Seligman, E.R.A., Johnson, A. (eds.) Encyclopaedia of Life Sciences. Wiley, Hoboken (2012)

    Google Scholar 

  2. Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Parzen, E., Tanabe, K., Kitagawa, G. (eds.) Selected Papers of Hirotugu Akaike. Springer Series in Statistics (Perspectives in Statistics). Springer, New York (1998). https://doi.org/10.1007/978-1-4612-1694-0_15

    Chapter  MATH  Google Scholar 

  3. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974)

    Article  MathSciNet  Google Scholar 

  4. Bandelt, H.-J., Dress, A.W.M.: A canonical decomposition theory for metrics on a finite set. Adv. Math. 92(1), 47–105 (1992)

    Article  MathSciNet  Google Scholar 

  5. Baroni, M., Semple, C., Steel, M.: Hybrids in real time. Syst. Biol. 55(1), 46–56 (2006)

    Article  Google Scholar 

  6. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodological) 57(1), 289–300 (1995)

    MathSciNet  MATH  Google Scholar 

  7. Bryant, D., Moulton, V.: Neighbor-Net: an agglomerative method for the construction of phylogenetic networks. Mol. Biol. Evol. 21(2), 255–265 (2004)

    Article  Google Scholar 

  8. Cardona, G., Rosselló, F., Valiente, G.: Tripartitions do not always discriminate phylogenetic networks. Math. Biosci. 211(2), 356–370 (2008)

    Article  MathSciNet  Google Scholar 

  9. Durand, E.Y., Patterson, N., Reich, D., Slatkin, M.: Testing for ancient admixture between closely related populations. Mol. Biol. Evol. 28(8), 2239–2252 (2011)

    Article  Google Scholar 

  10. Edwards, S.V.: Is a new and general theory of molecular systematics emerging? Evolution 63(1), 1–19 (2009)

    Article  Google Scholar 

  11. Felsenstein, J.: Cases in which parsimony or compatibility methods will be positively misleading. Syst. Biol. 27(4), 401–410 (1978)

    Article  Google Scholar 

  12. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Sunderland, Massachusetts (2004)

    Google Scholar 

  13. Francis, A.R., Steel, M.: Which phylogenetic networks are merely trees with additional arcs? Syst. Biol. 64(5), 768–777 (2015)

    Article  Google Scholar 

  14. Gluck-Thaler, E., Slot, J.C.: Dimensions of horizontal gene transfer in eukaryotic microbial pathogens. PLoS Pathog. 11(10), e1005156 (2015)

    Article  Google Scholar 

  15. Green, R.E., et al.: A draft sequence of the Neandertal genome. Science 328(5979), 710–722 (2010)

    Article  Google Scholar 

  16. Hein, J., Schierup, M., Wiuf, C.: Gene Genealogies, Variation and Evolution: A Primer in Coalescent Theory. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  17. Hejase, H.A., Liu, K.J.: A scalability study of phylogenetic network inference methods using empirical datasets and simulations involving a single reticulation. BMC Bioinform. 17(1), 422 (2016)

    Article  Google Scholar 

  18. Hudson, R.R.: Generating samples under a wright-fisher neutral model of genetic variation. Bioinformatics 18(2), 337–338 (2002)

    Article  MathSciNet  Google Scholar 

  19. Huelsenbeck, J.P., Hillis, D.M.: Success of phylogenetic methods in the four-taxon case. Syst. Biol. 42(3), 247–264 (1993)

    Article  Google Scholar 

  20. Hurvich, C.M., Tsai, C.-L.: Regression and time series model selection in small samples. Biometrika 76(2), 297–307 (1989)

    Article  MathSciNet  Google Scholar 

  21. Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic Networks: Concepts Algorithms and Applications. Cambridge University Press, Cambridge, United Kingdom (2010)

    Book  Google Scholar 

  22. Jukes, T.H., Cantor, C.R.: Evolution of Protein Molecules, p. 132. Academic Press, New York (1969)

    Google Scholar 

  23. Keeling, P.J., Palmer, J.D.: Horizontal gene transfer in eukaryotic evolution. Nat. Rev. Genet. 9(8), 605–618 (2008)

    Article  Google Scholar 

  24. Kingman, J.F.C.: The coalescent. Stoch. Process. Appl. 13(3), 235–248 (1982)

    Article  MathSciNet  Google Scholar 

  25. Leaché, A.D., Harris, R.B., Rannala, B., Yang, Z.: The influence of gene flow on species tree estimation: a simulation study. Syst. Biol. 63, 17–30 (2013)

    Article  Google Scholar 

  26. Liu, K., Raghavan, S., Nelesen, S., Linder, C.R., Warnow, T.: Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science 324(5934), 1561–1564 (2009)

    Article  Google Scholar 

  27. Liu, K., et al.: SATé-II: Very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees. Syst. Biol. 61(1), 90–106 (2012)

    Article  Google Scholar 

  28. Liu, K.J., Steinberg, E., Yozzo, A., Song, Y., Kohn, M.H., Nakhleh, L.: Interspecific introgressive origin of genomic diversity in the house mouse. Proc. Nat. Acad. Sci. 112(1), 196–201 (2015)

    Article  Google Scholar 

  29. McInerney, J.O., Cotton, J.A., Pisani, D.: The prokaryotic tree of life: past, present... and future? Trends Ecol. Evol. 23(5), 276–281 (2008)

    Article  Google Scholar 

  30. Metzker, M.L.: Sequencing technologies - the next generation. Nat. Rev. Genet. 11(1), 31–46 (2010)

    Article  Google Scholar 

  31. Mirarab, S., Warnow, T.: ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics 31(12), i44–i52 (2015)

    Article  Google Scholar 

  32. Mirarab, S., Reaz, R., Bayzid, M.S., Zimmermann, T., Swenson, M.S., Warnow, T.: ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics 30(17), i541–i548 (2014)

    Article  Google Scholar 

  33. Mirarab, S., Nguyen, N., Guo, S., Wang, L.-S., Kim, J., Warnow, T.: PASTA: ultra-large multiple sequence alignment for nucleotide and amino-acid sequences. J. Comput. Biol. 22(5), 377–386 (2015)

    Article  Google Scholar 

  34. Nakhleh, L.: Computational approaches to species phylogeny inference and gene tree reconciliation. Trends Ecol. Evol. 28(12), 719–728 (2013)

    Article  Google Scholar 

  35. Nakhleh, L., Sun, J., Warnow, T., Linder, C.R., Moret, B.M., Tholse, A.: Towards the development of computational tools for evaluating phylogenetic network reconstruction methods. In: Pacific Symposium on Biocomputing, vol. 8, pp. 315–326. World Scientific (2003)

    Google Scholar 

  36. Neafsey, D.E.: Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science 347(6217), 1258522 (2015)

    Article  Google Scholar 

  37. Price, M., Dehal, P., Arkin, A.: FastTree 2 - approximately maximum-likelihood trees for large alignments. PLoS ONE 5(3), e9490 (2010)

    Article  Google Scholar 

  38. Rambaut, A., Grassly, N.C.: Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Comput. Appl. Biosci. 13, 235–238 (1997)

    Google Scholar 

  39. Reich, D., et al.: Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468(7327), 1053–1060 (2010)

    Article  Google Scholar 

  40. Sanderson, M.J.: r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19(2), 301–302 (2003)

    Article  Google Scholar 

  41. Schwarz, G.: Estimating the dimension of a model. Annal. Stat. 6(2), 461–464 (1978)

    Article  MathSciNet  Google Scholar 

  42. Solís-Lemus, C., Ané, C.: Inferring phylogenetic networks with maximum pseudo-likelihood under incomplete lineage sorting. PLoS Genet. 12(3), 1–21 (2016)

    Article  Google Scholar 

  43. Than, C., Ruths, D., Nakhleh, L.: PhyloNet: a software package for analyzing and reconstructing reticulate evolutionary relationships. BMC Bioinform. 9(1), 322 (2008)

    Article  Google Scholar 

  44. The Heliconious Genome Consortium: Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487(7405), 94–98 (2012)

    Article  Google Scholar 

  45. Yun, Y., Nakhleh, L.: A maximum pseudo-likelihood approach for phylogenetic networks. BMC Genomics 16(Suppl 10), S10 (2015)

    Article  Google Scholar 

  46. Yu, Y., Cuong, T., Degnan, J.H., Nakhleh, L.: Coalescent histories on phylogenetic networks and detection of hybridization despite incomplete lineage sorting. Syst. Biol. 60(2), 138–149 (2011)

    Article  Google Scholar 

  47. Yu, Y., Degnan, J.H., Nakhleh, L.: The probability of a gene tree topology within a phylogenetic network with applications to hybridization detection. PLoS Genet. 8(4), pp. e1002660 (2012)

    Google Scholar 

  48. Yu, Y., Dong, J., Liu, K.J., Nakhleh, L.: Maximum likelihood inference of reticulate evolutionary histories. Proc. Nat. Acad. Sci. 111(46), 16448–16453 (2014)

    Article  Google Scholar 

  49. Zhang, L.: On tree-based phylogenetic networks. J. Comput. Biol. 23(7), 553–565 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the following support: NSF grants no. CCF-1565719 (to KJL), CCF-1714417 (to KJL), and DEB-1737898 (to GMB and KJL), BEACON grants (NSF STC Cooperative Agreement DBI-093954) to GMB and KJL, and computing resources provided by MSU HPCC. We would also like to acknowledge Daniel Neafsey for kindly sending us a processed version of the genomic sequence dataset from [36].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 479 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hejase, H.A., VandePol, N., Bonito, G.M., Liu, K.J. (2018). FastNet: Fast and Accurate Statistical Inference of Phylogenetic Networks Using Large-Scale Genomic Sequence Data. In: Blanchette, M., Ouangraoua, A. (eds) Comparative Genomics. RECOMB-CG 2018. Lecture Notes in Computer Science(), vol 11183. Springer, Cham. https://doi.org/10.1007/978-3-030-00834-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00834-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00833-8

  • Online ISBN: 978-3-030-00834-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics