Skip to main content

Data-Driven Modelling of the Inositol Trisphosphate Receptor (\(\text {IP}_3\text {R}\)) and its Role in Calcium-Induced Calcium Release (CICR)

  • Chapter
  • First Online:
Book cover Computational Glioscience

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI))

Abstract

We review the current state of the art of data-driven modelling of the inositol trisphosphate receptor (\(\text {IP}_3\text {R}\)). After explaining that the \(\text {IP}_3\text {R}\) plays a crucial role as a central regulator in calcium dynamics, several sources of relevant experimental data are introduced. Single ion channels are best studied by recording single-channel currents under different ligand concentrations via the patch-clamp technique. The particular relevance of modal gating, the spontaneous switching between different levels of channel activity that occur even at constant ligand concentrations, is highlighted. In order to investigate the interactions of \(\text {IP}_3\text {R}\)s, calcium release from small clusters of channels, so-called calcium puffs, can be used. We then present the mathematical framework common to all models based on single-channel data, aggregated continuous-time Markov models, and give a short review of statistical approaches for parameterising these models with experimental data. The process of building a Markov model that integrates various sources of experimental data is illustrated using two recent examples, the model by Ullah et al. and the “Park–Drive” model by Siekmann et al. (Biophys. J. 2012), the only models that account for all sources of data currently available. Finally, it is demonstrated that the essential features of the Park–Drive model in different models of calcium dynamics are preserved after reducing it to a two-state model that only accounts for the switching between the inactive “park” and the active “drive” modes. This highlights the fact that modal gating is the most important mechanism of ligand regulation in the \(\text {IP}_3\text {R}\). It also emphasises that data-driven models of ion channels do not necessarily have to lead to detailed models but can be constructed so that relevant data is selected to represent ion channels at the appropriate level of complexity for a given application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allegrini P, Fronzoni L, Pirino D (2009) The influence of the astrocyte field on neuronal dynamics and synchronization. J Biol Phys 35(4):413–423

    Article  PubMed  PubMed Central  Google Scholar 

  • Alzayady KJ, Wagner LE, Chandrasekhar R, Monteagudo A, Godiska R, Tall GG, Joseph SK, Yule DI (2013) Functional inositol 1,4,5-trisphosphate receptors assembled from concatenated homo- and heteromeric subunits. J Biol Chem 288(41):29772–29784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atri A, Amundson J, Clapham D, Sneyd J (1993) A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte. Biophys J 65(4):1727–1739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ball FG, Cai Y, Kadane JB, O’Hagan A (1999) Bayesian inference for ion-channel gating mechanisms directly from single-channel recordings, using Markov chain Monte Carlo. Proc R Soc Lond A 455:2879–2932

    Article  Google Scholar 

  • Barrack DS, Thul R, Owen MR (2014) Modelling the coupling between intracellular calcium release and the cell cycle during cortical brain development. J Theor Biol 347:17–32

    Article  CAS  PubMed  Google Scholar 

  • Barrack DS, Thul R, Owen MR (2015) Modelling cell cycle synchronisation in networks of coupled radial glial cells. J Theor Biol 377:85–97

    Article  CAS  PubMed  Google Scholar 

  • Bennett MR, Buljan V, Farnell L, Gibson WG (2006) Purinergic junctional transmission and propagation of calcium waves in spinal cord astrocyte networks. Biophys J 91:3560–3571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett MR, Farnell L, Gibson WG (2005) A quantitative model of purinergic junctional transmission of calcium waves in astrocyte networks. Biophys J 89:2235–2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett MR, Farnell L, Gibson WG (2008) A quantitative model of cortical spreading depression due to purinergic and gap-junction transmission in astrocyte networks. Biophys J 95:5648–5660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bezprozvanny I, Watras J, Ehrlich BE (1991) Bell-shaped calcium-response curves of Ins(1,4,5)P\(_3\)-gated and calcium-gated channels from endoplasmic-reticulum of cerebellum. Nature 351(6329):751–754

    Article  CAS  PubMed  Google Scholar 

  • Bruno WJ, Yang J, Pearson JE (2005) Using independent open-to-closed transitions to simplify aggregated Markov models for ion channel gating kinetics. Proc Nat Acad Sci USA 102(16):6326–6331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callamaras N, Marchant JS, Sun XP, Parker I (1998) Activation and coordination of InsP\(_3\)-mediated elementary Ca\(^{2+}\) events during global Ca\(^{2+}\) signals in Xenopus oocytes. J Physiol 509:81–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao P, Donovan G, Falcke M, Sneyd J (2013) A stochastic model of calcium puffs based on single-channel data. Biophys J 105:1133–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao P, Tan X, Donovan G, Sanderson MJ, Sneyd J (2014) A deterministic model predicts the properties of stochastic calcium oscillations in airway smooth muscle cells. PLoS Comput Biol 10(8):e1003783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chakrapani S, Cordero-Morales JF, Jogini V, Pan AC, Cortes DM, Roux B, Perozo E (2011) On the structural basis of modal gating behaviour in K\(^+\) channels. Nat Struct Mol Biol 18(1):67–75

    Article  CAS  PubMed  Google Scholar 

  • Chakrapani S, Cordero-Morales JF, Peroso E (2007a) A quantitative description of KscA gating II: single-channel currents. J Gen Physiol 130(5):479–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrapani S, Cordero-Morales JF, Perozo E (2007b) A quantitative description of KscA gating I: macroscopic currents. J Gen Physiol 130(5):465–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colquhoun D, Hawkes AG (1981) On the stochastic properties of single ion channels. Proc R Soc Lond B 211:205–235

    Article  CAS  PubMed  Google Scholar 

  • Colquhoun D, Hawkes AG, Srodzinski K (1996) Joint distributions of apparent open and shut times of single-ion channels and maximum likelihood fitting of mechanisms. Philos Trans R Soc Lond A 354:2555–2590

    Article  Google Scholar 

  • De Pittà M, Volman V, Levine H, Pioggia G, De Rossi D, Ben-Jacob E (2008) Coexistence of amplitude and frequency modulations in intracellular calcium dynamics. Phys Rev E - Stat Nonlin Soft Matter Phys 77(3):030903

    Article  PubMed  CAS  Google Scholar 

  • De Pittà M, Goldberg M, Volman V, Berry H, Ben-Jacob E (2009a) Glutamate regulation of calcium and IP\(_3\) oscillating and pulsating dynamics in astrocytes. J Biol Phys 35(4):383–411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Pittà M, Volman V, Levine H, Ben-Jacob E (2009b) Multimodal encoding in a simplified model of intracellular calcium signaling. Cogn Process 10(1):55–70

    Article  Google Scholar 

  • De Pittà M, Volman V, Berry H, Ben-Jacob E (2011) A tale of two stories: astrocyte regulation of synaptic depression and facilitation. PLoS Comput Biol 7(12):e1002293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Pittà M, Volman V, Berry H, Parpura V, Volterra A, Ben-Jacob E (2012) Computational quest for understanding the role of astrocyte signaling in synaptic transmission and plasticity. Front Comput Neurosci 6

    Google Scholar 

  • De Young GW, Keizer J (1992) A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca\(^{2+}\) concentration. Proc Nat Acad Sci 89(20):9895–9899

    Article  PubMed  PubMed Central  Google Scholar 

  • Dupont G, Lokenye EFL, Challiss RJ (2011) A model for Ca\(^{2+}\) oscillations stimulated by the type 5 metabotropic glutamate receptor: an unusual mechanism based on repetitive, reversible phosphorylation of the receptor. Biochimie 93(12):2132–2138

    Article  CAS  PubMed  Google Scholar 

  • Edwards J, Gibson W (2010) A model for Ca\(^{2+}\) waves in networks of glial cells incorporating both intercellular and extracellular communication pathways. J Theor Biol 263(1):45–58

    Article  CAS  PubMed  Google Scholar 

  • Falcke M (2004) Reading the patterns in living cells - the physics of Ca\(^{2+}\) signaling. Adv Phys 53(3):255–440

    Article  CAS  Google Scholar 

  • Fedorenko OA, Popugaeva E, Enomoto M, Stathopulos PB, Ikura M, Bezprozvanny I (2014) Intracellular calcium channels: inositol-1,4,5-trisphosphate receptors. Eur J Pharmacol 739:39–48 (Special Issue on Calcium Channels)

    Article  CAS  PubMed  Google Scholar 

  • Foskett JK, Mak D-OD (2010) Regulation of IP\(_3\)r channel gating by Ca\(^{2+}\) and Ca\(^{2+}\) binding proteins. In: Serysheva II (ed) Structure and function of calcium release channels, vol 66. current topics in membranes. Academic Press, New York, pp 235–272

    Chapter  Google Scholar 

  • Foskett JK, White C, Cheung K, Mak D (2007) Inositol trisphosphate receptor Ca\(^{2+}\) release channels. Physiol Rev 87:593–568

    Article  CAS  PubMed  Google Scholar 

  • Fredkin DR, Montal M, Rice JA (1985) Identification of aggregated Markovian models: application to the nicotinic acetylcholine receptor. In: Cam LML, Olshen RA (eds) Proceedings of the Berkeley conference in Honor of Jerzy Neyman and Jack Kiefer, volume 1. Wadsworth, Belmont, CA, pp 269–289

    Google Scholar 

  • Fredkin DR, Rice JA (1986) On aggregated Markov processes. J Appl Probab 23(1):208–214

    Article  Google Scholar 

  • Gawthrop PJ, Crampin EJ (2014) Energy-based analysis of biochemical cycles using bond graphs. Proc Royal Soc Lond A: Math Phys Eng Sci 470(2171):

    Article  Google Scholar 

  • Gawthrop PJ, Siekmann I, Kameneva T, Saha S, Ibbotson MR, Crampin EJ (2017) Bond graph modelling of chemoelectrical energy transduction, IET Sys Bio 11(5):127–138. https://doi.org/10.1049/iet-syb.2017.0006, IET digital library, http://digital-library.theiet.org/content/journals/10.1049/iet-syb.2017.0006

    Article  PubMed Central  Google Scholar 

  • Gin E, Falcke M, Wagner LE, Yule DI, Sneyd J (2009a) Markov chain Monte Carlo fitting of single-channel data from inositol trisphosphate receptors. J Theor Biol 257:460–474

    Article  CAS  PubMed  Google Scholar 

  • Gin E, Falcke M, Wagner LE II, Yule DI, Sneyd J (2009b) A kinetic model of the inositol trisphosphate receptor based on single-channel data. Biophys J 96(10):4053–4062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gin E, Wagner LE II, Yule DI, Sneyd J (2009c) Inositol trisphosphate receptor and ion channel models based on single-channel data. Chaos: an interdisciplinary. J Nonlinear Sci 19(3):037104

    Google Scholar 

  • Hines KE, Bankston JR, Aldrich RW (2015) Analyzing single-molecule time series via nonparametric Bayesian inference. Biophys J 108(3):540–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hituri K, Linne M-L (2013) Comparison of models for IP\(_3\) receptor kinetics using stochastic simulations. PLoS ONE 8(4):e59618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgson MEA, Green PJ (1999) Bayesian choice among Markov models of ion channels using Markov chain Monte Carlo. Proc Royal Soc Lond Ser A-Math Phys Eng Sci 455(1989):3425–3448

    Article  Google Scholar 

  • Höfer T, Venance L, Giaume C (2002) Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach. J Neurosci 22(12):4850–4859

    Article  PubMed  PubMed Central  Google Scholar 

  • Holtzclaw L, Pandhit S, Bare D, Mignery G, Russell J (2002) Astrocytes in adult rat brain express type 2 inositol 1,4,5-trisphosphate receptors. GLIA 39(1):69–84

    Article  PubMed  Google Scholar 

  • Ionescu L, White C, Cheung K-H, Shuai J, Parker I, Pearson JE, Foskett JK, Mak D-OD (2007) Mode switching is the major mechanism of ligand regulation of InsP\(_3\) receptor calcium release channels. J Gen Physiol 130(6):631–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lallouette J, De Pittà M, Ben-Jacob E, Berry H (2014) Sparse short-distance connections enhance calcium wave propagation in a 3D model of astrocyte networks. Frontiers Comput Neurosci 8:45

    Article  Google Scholar 

  • Lavrentovich M, Hemkin S (2008) A mathematical model of spontaneous calcium(II) oscillations in astrocytes. J Theor Biol 251(4):553–560

    Article  CAS  PubMed  Google Scholar 

  • Li B, Chen S, Zeng S, Luo Q, Li P (2012) Modeling the contributions of Ca\(^{2+}\) flows to spontaneous Ca\(^{2+}\) oscillations and cortical spreading depression-triggered Ca\(^{2+}\) waves in astrocyte networks. PLoS ONE 7(10)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y-X, Rinzel J (1994) Equations for InsP3 receptor-mediated [Ca\(^{2+}\)]\(_i\) oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. J Theor Biol 166(4):461–473

    Article  CAS  PubMed  Google Scholar 

  • Ludtke SJ, Serysheva II (2013) Single-particle cryo-EM of calcium release channels: structural validation. Curr Opin Struct Biol 23:755–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macdonald C, Silva G (2013) A positive feedback cell signaling nucleation model of astrocyte dynamics. Frontiers Neuroeng 6:4

    Article  CAS  Google Scholar 

  • Magleby KL, Pallotta BS (1983a) Burst kinetics of single calcium-activated potassium channels in cultured rat muscle. J Physiol-Lond 344:605–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magleby KL, Pallotta BS (1983b) Calcium dependence of open and shut interval distributions from calcium-activated potassium channels in cultured rat muscle. J Physiol-Lond 344:585–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mak D-OD, Foskett JK (2015) Inositol 1,4,5-trisphosphate receptors in the endoplasmic reticulum: a single-channel point of view. Cell Calcium 58(1):67–78

    Article  CAS  PubMed  Google Scholar 

  • Mak D-OD, Pearson JE, Loong KPC, Datta S, Fernández-Mongil M, Foskett JK (2007) Rapid ligand-regulated gating kinetics of single inositol 1,4,5-trisphosphate receptor Ca\(^{2+}\) release channels. EMBO Rep 8(11):1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchant J, Callamaras N, Parker I (1999) Initiation of IP\(_3\)-mediated Ca\(^{2+}\) waves in Xenopus oocytes. EMBO J 18:5285–5299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260(5554):799–802

    Article  CAS  PubMed  Google Scholar 

  • Parker I, Choi J, Yao Y (1996) Elementary events of InsP3-induced Ca\(^{2+}\) liberation in Xenopus oocytes: hot spots, puffs and blips. Cell Calcium 20(2):105–121

    Article  CAS  PubMed  Google Scholar 

  • Parys JB, Sernett SW, DeLisle S, Snyder PM, Welsh MJ, Campbell KP (1992) Isolation, characterization, and localization of the inositol 1,4,5-trisphosphate receptor protein in Xenopus laevis oocytes. J Biol Chem 267(26):18776–18782

    CAS  PubMed  Google Scholar 

  • Postnov D, Koreshkov R, Brazhe N, Brazhe A, Sosnovtseva O (2009) Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks. J Biol Phys 35(4):425–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin F, Auerbach A, Sachs F (1996) Idealization of single-channel currents using the segmental K-means method. Biophys J 70(2, Part 2):MP432

    Google Scholar 

  • Qin F, Auerbach A, Sachs F (1997) Maximum likelihood estimation of aggregated Markov processes. Proc R Soc Lond Ser B-Biol Sci 264:375–383

    Article  CAS  Google Scholar 

  • Riera J, Hatanaka R, Ozaki T, Kawashima R (2011a) Modeling the spontaneous Ca\(^{2+}\) oscillations in astrocytes: inconsistencies and usefulness. J Integr Neurosci 10(04):439–473

    Article  CAS  PubMed  Google Scholar 

  • Riera J, Hatanaka R, Uchida T, Ozaki T, Kawashima R (2011b) Quantifying the uncertainty of spontaneous Ca\(^{2+}\) oscillations in astrocytes: particulars of Alzheimer’s disease. Biophys J 101(3):554–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosales R (2004) MCMC for hidden Markov models incorporating aggregation of states and filtering. Bull Math Biol 66:1173–1199

    Article  PubMed  Google Scholar 

  • Rosales R, Stark JA, Fitzgerald WJ, Hladky SB (2001) Bayesian restoration of ion channel records using hidden Markov models. Biophys J 80(3):1088–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rüdiger S (2014) Stochastic models of intracellular calcium signals. Phys Rep 534(2):39–87

    Article  CAS  Google Scholar 

  • Rüdiger S, Shuai J, Huisinga W, Nagaiah C, Warnecke G, Parker I, Falcke M (2007) Hybrid stochastic and deterministic simulations of calcium blips. Biophys J 93(6):1847–1857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seneta E (1981) Non-negative Matrices and Markov Chains, 2nd edn. Springer Series in Statistics, Springer, New York

    Book  Google Scholar 

  • Sharp AH, Nucifora FC Jr, Blondel O, Sheppard CA, Zhang C, Snyder SH, Russell JT, Ryugo DK, Ross CA (1999) Differential cellular expression of isoforms of inositol 1,4,5-triphosphate receptors in neurons and glia in brain. J Comp Neurol 406(2):207–220

    Article  CAS  PubMed  Google Scholar 

  • Siekmann I, Crampin EJ, Sneyd J (2012a) MCMC can detect non-identifiable models. Biophys J 103(11):1275–1286

    Article  CAS  Google Scholar 

  • Siekmann I, Fackrell M, Crampin EJ, Taylor P (2016) Modelling modal gating of ion channels with hierarchical Markov models. Proceedings of the Royal Society of London A 472, 20160122

    Article  Google Scholar 

  • Siekmann I, Sneyd J, Crampin EJ (2014) Statistical analysis of modal gating in ion channels. Proc R Soc Lond A 470(2166):20140030

    Article  CAS  Google Scholar 

  • Siekmann I, Wagner LE II, Yule D, Crampin EJ, Sneyd J (2012b) A kinetic model of type I and type II IP\(_3\)R accounting for mode changes. Biophys J 103(4):658–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siekmann I, Wagner LE II, Yule D, Fox C, Bryant D, Crampin EJ, Sneyd J (2011) MCMC estimation of Markov models for ion channels. Biophys J 100:1919–1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith IF, Parker I (2009) Imaging the quantal substructure of single IP\(_3\)R channel activity during Ca\(^{2+}\) puffs in intact mammalian cells. Proc Nat Acad Sci USA 106(15):6404–6409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sneyd J, Charles A, Sanderson M (1994) A model for the propagation of intercellular calcium waves. Am J Physiol - Cell Physiol 266:C293–C302

    Article  CAS  Google Scholar 

  • Sneyd J, Falcke M (2005) Models of the inositol trisphosphate receptor. Prog Biophys Mol Biol 89:207–245

    Article  CAS  PubMed  Google Scholar 

  • Sneyd J, Falcke M, Dufour JF, Fox C (2004) A comparison of three models of the inositol trisphosphate receptor. Prog Biophys Mol Biol 85:121–140

    Article  CAS  PubMed  Google Scholar 

  • Swillens S, Combettes L, Champeil P (1994) Transient inositol 1,4,5-trisphosphate-induced Ca\(^{2+}\) release: a model based on regulatory Ca\(^{(2+)}\)-binding sites along the permeation pathway. Proc Nat Acad Sci 91(21):10074–10078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thurley K, Skupin A, Thul R, Falcke M (2012) Fundamental properties of Ca\(^{2+}\) signals. Biochim Biophys Acta 8:1185–1194

    Google Scholar 

  • Thurley K, Smith IF, Tovey SC, Taylor CW, Parker I, Falcke M (2011) Timescales of \({\rm IP}_3\)-evoked \({\rm Ca}^{2+}\) spikes emerge from \({\rm Ca}^{2+}\) puffs only at the cellular level. Biophys J 101:2638–2644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu H, Wang Z, Bezprozvanny I (2005) Modulation of mammalian inositol 1,4,5-trisphosphate receptor isoforms by calcium: a role of calcium sensor region. Biophys J 88(2):1056–1069

    Article  CAS  PubMed  Google Scholar 

  • Ullah G, Bruno WJ, Pearson JE (2012a) Simplification of reversible Markov chains by removal of states with low equilibrium occupancy. J Theor Biol 311:117–129

    Article  PubMed  PubMed Central  Google Scholar 

  • Ullah G, Mak D-OD, Pearson JE (2012b) A data-driven model of a modal gated ion channel: the inositol 1,4,5-trisphosphate receptor in insect Sf9 cells. J Gen Physiol 140(2):159–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullah G, Parker I, Mak DOD, Pearson JE (2012c) Multi-scale data-driven modeling and observation of calcium puffs. Cell Calcium 52:152–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner LE, Yule DI (2012) Differential regulation of the InsP\(_3\) receptor type-1 and -2 single channel properties by InsP\(_3\), Ca\(^{2+}\) and ATP. J Physiol 590(14):3245–3259

    Article  CAS  PubMed  Google Scholar 

  • Zeng S, Li B, Zeng S, Chen S (2009) Simulation of spontaneous Ca\(^{2+}\) oscillations in astrocytes mediated by voltage-gated calcium channels. Biophys J 97(9):2429–2437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding from NIH grant R01-DE19245 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Siekmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siekmann, I., Cao, P., Sneyd, J., Crampin, E.J. (2019). Data-Driven Modelling of the Inositol Trisphosphate Receptor (\(\text {IP}_3\text {R}\)) and its Role in Calcium-Induced Calcium Release (CICR). In: De Pittà, M., Berry, H. (eds) Computational Glioscience. Springer Series in Computational Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-00817-8_2

Download citation

Publish with us

Policies and ethics