Skip to main content

Formulation of Biologics Including Biopharmaceutical Considerations

  • Chapter
  • First Online:
Pharmaceutical Biotechnology

Abstract

This chapter describes the various issues a formulator of biologics faces when turning an active pharmaceutical ingredient (API) into a biopharmaceutical product that can be administered to a patient. A well-equipped analytical lab to characterize chemical and physical characteristics of the protein in the formulation process is a first requirement. Then, the proper excipients and conditions (e.g., freeze-dried or not; refrigerated or not) to achieve an acceptable shelf-life of the formulated protein can be selected. Throughout this process one should consider the specific requirements linked to the desired route of administration, e.g., dose, volume, primary container. Alternative routes of administration are briefly discussed and their limitations listed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arakawa T, Kita Y, Carpenter JF (1991) Protein-solvent interactions in pharmaceutical formulation. Pharm Res 8:285–291

    Article  CAS  Google Scholar 

  • Bahrenburg S, Karow AR, Garidel P (2015) Buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions: from protein buffer capacity prediction to bioprocess applications. Biotechnol J 10:610–622

    Article  CAS  Google Scholar 

  • Chang BS, Hershenson S (2002) Practical approaches to protein formulation development. In: Carpenter JF, Manning MC (eds) Rational design of stable protein formulations–theory and practice. Kluwer Academic/Plenum, New York, pp 1–20

    Google Scholar 

  • Chi E, Krishnan S, Randolph TW, Carpenter JF (2003) Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharm Res 20:1325–1336

    Article  CAS  Google Scholar 

  • Constantino HR, Pikal MJ (2004) Lyophilization of biopharmaceuticals. AAPS Press, Arlington

    Google Scholar 

  • Geidobler R, Winter G (2013) Controlled ice nucleation in the field of freeze-drying: fundamentals and technology review. Eur J Pharm Biopharm 85:214–222

    Article  CAS  Google Scholar 

  • Hawe A, Wiggenhorn M, van de Weert M, Garbe JHO, Mahler H-C, Jiskoot W (2012) Forced degradation of therapeutic proteins. J Pharm Sci 101:895–913

    Article  CAS  Google Scholar 

  • Heilmann K (1984) Therapeutic systems. Rate controlled delivery: concept and development. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Hizentra Infusion Guide. https://www.hizentra.com/common/pdf/Hizentra-Step-by-step-infusion-guide.pdf. Accessed Nov 2017

  • Hovorka R (2011) Closed-loop insulin delivery: from bench to clinical practice. Nat Rev Endocrinol 7:385–395

    Article  CAS  Google Scholar 

  • Jiskoot W, Crommelin DJA (2005) Methods for structural analysis of protein pharmaceuticals. AAPS Press, Arlington

    Google Scholar 

  • Jiskoot W, Nejadnik MR, Sediq AS (2017) Potential issues with the handling of biologicals in a hospital. J Pharm Sci 106:1688–1689

    Article  CAS  Google Scholar 

  • Jorgensen J, Nielsen HM (eds) (2009) Delivery technologies for biopharmaceuticals: peptides, proteins, nucleic acids and vaccines. Wiley, Chichester

    Google Scholar 

  • Kamerzell TJ, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB (2011) Protein–excipient interactions: mechanisms and biophysical characterization applied to protein formulation development. Adv Drug Deliv Rev 63:1118–1159

    Article  CAS  Google Scholar 

  • Kinnunen HM, Mrsny RJ (2014) Improving the outcomes of biopharmaceutical delivery via the subcutaneous route by understanding the chemical, physical and physiological properties of the subcutaneous injection site. J Control Release 182:22–32

    Article  CAS  Google Scholar 

  • Maberly GF, Wait GA, Kilpatrick JA, Loten EG, Gain KR, Stewart RDH, Eastman CJ (1982) Evidence for insulin degradation by muscle and fat tissue in an insulin resistant diabetic patient. Diabetologia 23:333–336

    Article  CAS  Google Scholar 

  • Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS (2010) Stability of protein pharmaceuticals: an update. Pharm Res 27:544–575

    Article  Google Scholar 

  • Manning MC, Patel K, Borchardt RT (1989) Stability of proteins. Pharm Res 6:903–918

    Article  CAS  Google Scholar 

  • Martos A, Koch W, Jiskoot W, Wuchner K, Winter G, Friess W, Hawe A (2017) Trends on analytical characterization of polysorbates and their degradation products in biopharmaceutical formulations. J Pharm Sci 106:1722–1735

    Article  CAS  Google Scholar 

  • Mensink MA, Frijlink HW, van der Voort Maarschalk K, Hinrichs W (2017) How sugars protect proteins in the solid state and during drying (review): mechanisms of stabilization in relation to stress conditions. Eur J Pharm Biopharm 114:288–295

    Article  CAS  Google Scholar 

  • Moeller EH, Jorgensen L (2009) Alternative routes of administration for systemic delivery of protein pharmaceuticals. Drug Discov Today Technol 5:89–94

    Article  Google Scholar 

  • Nejadnik MR, Randolph TW, Volkin DB, Schöneich C, Carpenter JF, Crommelin DJA, Jiskoot W (2018) Post-production handling and administration of protein pharmaceuticals and potential instability issues. J Pharm Sci 107(8):2013–2019

    Article  CAS  Google Scholar 

  • Nguyen TH, Ward C (1993) Stability characterization and formulation development of alteplase, a recombinant tissue plasminogen activator. In: Wang YJ, Pearlman R (eds) Stability and characterization of protein and peptide drugs. Case histories. Plenum Press, New York, pp 91–134

    Chapter  Google Scholar 

  • Patton JS, Bukar JG, Eldon MA (2004) Clinical pharmacokinetics and pharmacodynamics of inhaled insulin. Clin Pharmacokinet 43:781–801

    Article  CAS  Google Scholar 

  • Pearlman R, Bewley TA (1993) Stability and characterization of human growth hormone. In: Wang YJ, Pearlman R (eds) Stability and characterization of protein and peptide drugs. Case histories. Plenum Press, New York, pp 1–58

    Google Scholar 

  • Pikal MJ (1990) Freeze-drying of proteins. Part I: process design. BioPharm 3:18–27

    CAS  Google Scholar 

  • Pristoupil TI (1985) Haemoglobin lyophilized with sucrose: effect of residual moisture on storage. Haematologia 18:45–52

    CAS  PubMed  Google Scholar 

  • Richter WF, Bhansali SG, Morris ME (2012) Mechanistic determinants of biotherapeutics absorption following sc administration. AAPS J 14:559–570

    Article  CAS  Google Scholar 

  • Runge A, Brown A (2016) https://diatribe.org/fda-approval-medtronic-minimed-670g-hybrid-closed-loop-system

  • Sacha GA, Saffell-Clemmer W, Abram K, Akers MJ (2010) Practical fundamentals of glass, rubber, and plastic sterile packaging systems. Pharm Dev Technol 15(1):6–34. https://doi.org/10.3109/10837450903511178

    Article  CAS  PubMed  Google Scholar 

  • Sacha G, Rogers JA, Miller RL (2015) Pre-filled syringes: a review of the history, manufacturing and challenges. Pharm Dev Technol 20:1–11. https://doi.org/10.3109/10837450.2014.982825

    Article  CAS  PubMed  Google Scholar 

  • Schaepelynck P, Darmon P, Molines L, Jannot-Lamotte MF, Treglia C, Raccah D (2011) Advances in pump technology: insulin patch pumps, combined pumps and glucose sensors, and implanted pumps. Diabetes Metab 37:S85–S93

    Article  CAS  Google Scholar 

  • Schersch K, Betz O, Garidel P, Muehlau S, Bassarab S, Winter G (2010) Systematic investigation of the effect of lyophilizate collapse on pharmaceutically relevant proteins I: stability after freeze-drying. J Pharm Sci 99:2256–2278

    Article  CAS  Google Scholar 

  • Sediq AS, van Duijvenvoorde RB, Jiskoot W, Nejadnik MR (2016) Subvisible particle formation during stirring. J Pharm Sci 105:519–529

    Article  CAS  Google Scholar 

  • Supersaxo A, Hein WR, Steffen H (1990) Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm Res 7:167–169

    Article  CAS  Google Scholar 

  • Tomlinson E (1987) Theory and practice of site-specific drug delivery. Adv Drug Deliv Rev 1:87–198

    Article  CAS  Google Scholar 

  • Trevitt S, Simpson S, Wood A (2016) Artificial pancreas device systems for the closed-loop control of type 1 diabetes: what systems are in development? J Diabetes Sci Technol 10:714–723

    Article  Google Scholar 

  • Vemuri S, Yu CT, Roosdorp N (1993) Formulation and stability of recombinant alpha1-antitrypsin. In: Wang YJ, Pearlman R (eds) Stability and characterization of protein and peptide drugs. Plenum Press, New York, pp 263–286

    Chapter  Google Scholar 

  • Vlieland ND, Gardarsdottir H, Bouvy ML, Egberts TCG, van den Bemt BJF (2016) The majority of patients do not store their biologic disease-modifying antirheumatic drugs within the recommended temperature range. Rheumatology 55:704–709

    Article  Google Scholar 

  • Vlieland ND, Nejadnik MR, Gardarsdottir H, Romeijn AS, Sediq S, Bouvy ML, Egberts ACG, van den Bemt BJF, Jiskoot W (2018) The impact of inadequate temperature storage conditions on aggregate and particle formation in drugs containing tumor necrosis factor-alpha inhibitors. Pharm Res 35:42

    Article  CAS  Google Scholar 

  • Weinbuch D, Hawe A, Jiskoot W, Friess W (2018) In: Mahler HC, Warne NW (eds) Challenges in protein product development. AAPS advances in the pharmaceutical sciences series. AAPS Press/Springer, New York, pp 3–22

    Chapter  Google Scholar 

  • Zbacnik TJ, Holcomb RE, Katayama DS, Murphy BM, Payne RW, Coccaro RC, Evans GJ, Matsuura JE, Henry CS, Manning MC (2017) Role of buffers in protein formulations. J Pharm Sci 106:713–733

    Article  CAS  Google Scholar 

  • Zölls S, Tantipolphan R, Wiggenhorn M, Winter G, Jiskoot W, Friess W, Hawe A (2012) Particles in therapeutic protein formulations–part I. Overview of analytical methods. J Pharm Sci 101:914–935

    Article  Google Scholar 

Further Reading

  • Carpenter JF, Manning MC (2002) Rational design of stable protein formulations–theory and practice. Kluwer Academic/Plenum, New York

    Book  Google Scholar 

  • Mahler H-C, Jiskoot W (2012) Analysis of aggregates and particles in protein pharmaceuticals. Wiley, Hoboken

    Book  Google Scholar 

  • Mahler HC, Warne NW (2018) Challenges in protein product development. AAPS advances in the pharmaceutical sciences series. AAPS Press/Springer, New York, p 2018

    Google Scholar 

  • Manning MC, Liu J, Li T, Holcomb RE (2018) Rational design of liquid formulations of proteins. Adv Protein Chem Struct Biol 112:1–59

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daan J. A. Crommelin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Crommelin, D.J.A., Hawe, A., Jiskoot, W. (2019). Formulation of Biologics Including Biopharmaceutical Considerations. In: Crommelin, D., Sindelar, R., Meibohm, B. (eds) Pharmaceutical Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-00710-2_5

Download citation

Publish with us

Policies and ethics