Skip to main content

Efficient Auction Based Coordination for Distributed Multi-agent Planning in Temporal Domains Using Resource Abstraction

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11117))

Abstract

Recent advances in mobile robotics and AI promise to revolutionize industrial production. As autonomous robots are able to solve more complex tasks, the difficulty of integrating various robot skills and coordinating groups of robots increases dramatically. Domain independent planning promises a possible solution. For single robot systems a number of successful demonstrations can be found in scientific literature. However our experiences at the RoboCup Logistics League in 2017 highlighted a severe lack in plan quality when coordinating multiple robots. In this work we demonstrate how out of the box temporal planning systems can be employed to increase plan quality for temporal multi-robot tasks. An abstract plan is generated first and sub-tasks in the plan are auctioned off to robots, which in turn employ planning to solve these tasks and compute bids. We evaluate our approach on two planning domains and find significant improvements in solution coverage and plan quality.

B. Nebel—This work was supported by the PACMAN project within the HYBRIS research group (NE 623/13-1). This work was also supported by the DFG grant EXC1086 BrainLinks-BrainTools to the University of Freiburg, Germany.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Coles, A.J., Coles, A.I., Fox, M., Long, D.: Forward-chaining partial-order planning. In: Proceedings of the Twentieth International Conference on Automated Planning and Scheduling (ICAPS 2010), May 2010

    Google Scholar 

  2. Eyerich, P., Mattmüller, R., Röger, G.: Using the context-enhanced additive heuristic for temporal and numeric planning. In: Proceedings of the 19th International Conference on Automated Planning and Scheduling, ICAPS 2009, Thessaloniki, Greece, 19–23 September 2009 (2009)

    Google Scholar 

  3. Helmert, M.: The fast downward planning system. J. Artif. Intell. Res. 26, 191–246 (2006)

    Article  Google Scholar 

  4. Howey, R., Long, D., Fox, M.: Validating plans with exogenous events. In: Proceedings of the 23rd Workshop of the UK Planning and Scheduling Special Interest Group (2004)

    Google Scholar 

  5. Koehler, J., Ottiger, D.: An AI-based approach to destination control in elevators. AI Mag. 23(3), 59–78 (2002)

    Google Scholar 

  6. Niemueller, T., Karpas, E., Vaquero, T., Timmons, E.: Planning competition for logistics robots in simulation. In: WS on Planning and Robotics (PlanRob) at International Conference on Automated Planning and Scheduling (ICAPS) (2016)

    Google Scholar 

  7. Sacerdoti, E.D.: Planning in a hierarchy of abstraction spaces. Artif. Intell. 5(2), 115–135 (1974)

    Article  Google Scholar 

  8. Schpers, B., Niemueller, T., Lakemeyer, G., Gebser, M., Schaub, T.: ASP-based time-bounded planning for logistics robots. In: Proceedings of the Twenty-Eighth International Conference on Automated Planning and Scheduling (ICAPS 2018) (2018)

    Google Scholar 

  9. Smith, R.G.: The contract net protocol: high-level communication and control in a distributed problem solver. IEEE Trans. Comput. 29(12), 1104–1113 (1980)

    Article  Google Scholar 

  10. Srivastava, B., Kambhampati, S., Do, M.B.: Planning the project management way: efficient planning by effective integration of causal and resource reasoning in realplan. Artif. Intell. 131(1–2), 73–134 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Hertle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hertle, A., Nebel, B. (2018). Efficient Auction Based Coordination for Distributed Multi-agent Planning in Temporal Domains Using Resource Abstraction. In: Trollmann, F., Turhan, AY. (eds) KI 2018: Advances in Artificial Intelligence. KI 2018. Lecture Notes in Computer Science(), vol 11117. Springer, Cham. https://doi.org/10.1007/978-3-030-00111-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00111-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00110-0

  • Online ISBN: 978-3-030-00111-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics