Skip to main content

Robust Methods for Detecting Spontaneous Activations in fMRI Data

  • Conference paper
  • First Online:
Studies in Neural Data Science (START UP RESEARCH 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 257))

Included in the following conference series:

Abstract

Functional magnetic resonance imaging (fMRI) is a technique for measuring brain activity. The outcomes of fMRI measurements are complex data that can be interpreted as multivariate time series, recorded at different brain locations, usually across subjects. The literature has been mainly concerned with task-based fMRI analysis, which focuses on the response to controlled exogenous stimuli. Nevertheless, resting state fMRI (RfMRI) analysis, dealing with spontaneous brain activity, is considered the key to understand the neuronal organisation of the brain. The aim of this paper is to identify spontaneous neural activations and to estimate the brain response function in RfMRI data, called Hemodynamic Response Function (HRF). To this purpose, we apply an existing method based on a normality assumption for the data generating process and we consider a novel, more general method, based on robust filtering. Finally, we compare the neural activations and HRF estimates for two specific patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aston, J., Kirsch, C.: Evaluating stationarity via change-point alternatives with applications to fMRI data. Ann. Appl. Statist. 6(4), 1906–1948 (2012)

    Article  MathSciNet  Google Scholar 

  2. Biswal, B., Zerrin Yetkin, F., Haughton, V.M., Hyde, J.S.: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34(4), 537–541 (1995)

    Article  Google Scholar 

  3. Biswal, B.: Toward discovery science of human brain function. PNAS 107(10), 4734–4739 (2010)

    Article  Google Scholar 

  4. Blasques, F., Koopman, S.J., Lucas, A., Schaumburg, J.: Spillover dynamics for systemic risk measurement using spatial financial time series models. J. Econom. 195(2), 211–223 (2016)

    Article  MathSciNet  Google Scholar 

  5. Bullmore, E., Fadili, J., Breakspear, M., Salvador, R., Suckling, J., Brammer, M.: Wavelets and statistical analysis of functional magnetic resonance images of the human brain. Statist. Methods Med. Res. 12(5), 375–399 (2003)

    Article  MathSciNet  Google Scholar 

  6. Castruccio, S., Ombao, H., Genton, M. G.: A scalable multi-resolution spatio-temporal model for brain activation and connectivity in fMRI data. Biometrics (2018)

    Google Scholar 

  7. Catania, L., Billé, A.G.: Dynamic spatial autoregressive models with autoregressive and heteroskedastic disturbances. J. Appl. Econom. (2017)

    Google Scholar 

  8. Choi, S.S., Cha, S.H., Tappert, C.C.: A survey of binary similarity and distance measures. J. Syst. Cybern. Inf. 8, 43–48 (2010)

    Google Scholar 

  9. Creal, D., Koopman, S., Lucas, A.: A dynamic multivariate heavy-tailed model for the time-varying volatility and correlations. J. Bus. Econom. Statist. 29, 552–563 (2011)

    Article  MathSciNet  Google Scholar 

  10. D’Esposito, M., Deouell, L., Gazzaley, A.: Alterations in the bold fMRI signal with ageing and disease: a challenge for neuro imaging. Nature Rev. Neurosci. (4), 863–872 (2003)

    Article  Google Scholar 

  11. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  12. Fox, M.D., Raichle, M.E.: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Rev. Neurosci. 8(9), 700 (2007)

    Article  Google Scholar 

  13. Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., Raichle, M.E.: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U. S. A. 102(27), 9673–9678 (2005)

    Article  Google Scholar 

  14. Friston, K.J., Fletcher, P., Josephs, O., Holmes, A.P., Rugg, M., Turner, R.: Event-related fMRI: characterizing differential responses. Neuroimage 7(1), 30–40 (1998)

    Article  Google Scholar 

  15. Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.P., Frith, C.D., Frackowiak, R.S.: Statistical parametric maps in functional imaging: a general linear approach. Huma. Brain Mapp. 2(4), 189–210 (1994)

    Article  Google Scholar 

  16. Glover, G.H.: Deconvolution of impulse response in event-related BOLD fMRI. Neuroimage 9(4), 416–429 (1999)

    Article  Google Scholar 

  17. Handwerker, D.A., Ollinger, J.M., D’Esposito, M.: Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. Neuroimage 21(4), 1639–1651 (2004)

    Article  Google Scholar 

  18. Harvey, A., Luati, A.: Filtering with heavy tails. J. Am. Statist. Assoc. 109(507), 1112–1122 (2014)

    Article  MathSciNet  Google Scholar 

  19. Harvey, A.C.: Dynamic Models for Volatility and Heavy Tails: With Applications to Financial and Economic Time Series. Cambridge University Press (2013)

    Google Scholar 

  20. Henson, R., Friston, K.: Convolution models for fMRI. Statistical parametric mapping: the analysis of functional brain images, pp. 178–192 (2007)

    Chapter  Google Scholar 

  21. Kruggel, F., von Cramon, D.Y.: Temporal properties of the hemodynamic response in functional MRI. Hum. Brain Mapp. 8(4), 259–271 (1999)

    Article  Google Scholar 

  22. Lange, N., Zeger, S.L.: Non-linear fourier time series analysis for human brain mapping by functional magnetic resonance imaging. J. Royal Statist. Soc. Ser. C (Appl. Statist.) 46(1), 1–29 (1997)

    Article  MathSciNet  Google Scholar 

  23. Lindquist, M.A.: The statistical analysis of fMRI data. Statist. Sci. 23(4), 439–464 (2008)

    Article  MathSciNet  Google Scholar 

  24. Lund, T.E.: Non-white noise in fMRI: Does modelling have an impact? Neuroimage 29(4), 1639–1651 (2006)

    MathSciNet  Google Scholar 

  25. Poldrack, R.A., Mumford, J.A., Nichols, T.E.: Handbook of Functional MRI data Analysis. Cambridge University Press (2011)

    Google Scholar 

  26. Woolrich, M.W., Ripley, B.D., Brady, M., Smith, S.M.: Temporal autocorrelation in univariate linear modeling of fMRI data. Neuroimage 14(6), 1370–1386 (2001)

    Article  Google Scholar 

  27. Worsley, K.J., Liao, C., Aston, J., Petre, V., Duncan, G., Morales, F., Evans, A.: A general statistical analysis for fMRI data. Neuroimage 15(1), 1–15 (2002)

    Article  Google Scholar 

  28. Worsley, K.: Detecting activation in fMRI data. Statist. Methods Med. Res. 12(5), 401–418 (2003)

    Article  MathSciNet  Google Scholar 

  29. Wu, G.R., Liao, W., Stramaglia, S., Ding, J.R., Chen, H., Marinazzo, D.: A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data. Med. Image Anal. 17(3), 365–374 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We thank two anonymous referees for their insightful comments and Federico Crescenzi, Michele Peruzzi and Alexios Polymeropoulos for constructive discussions at the Certosa di Pontignano, Bologna and Milano during the initial stages of the current work. We would like to thank Antonio Canale, Daniele Durante, Lucia Paci and Bruno Scarpa for bringing us together and providing us with the challenging dataset analysed in the paper. These data are provided by Greg Kiar and Eric Bridgeford from NeuroData at Johns Hopkins University, who graciously pre-processed the raw DTI and R-fMRI imaging data available at http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_1.html, using the pipelines ndmg and C-PAC. We would also like to thank all the participants of the StartUp Research event held at the Certosa di Pontignano on June 25-27, 2017, for the stimulating and nice discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Gasperoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gasperoni, F., Luati, A. (2018). Robust Methods for Detecting Spontaneous Activations in fMRI Data. In: Canale, A., Durante, D., Paci, L., Scarpa, B. (eds) Studies in Neural Data Science. START UP RESEARCH 2017. Springer Proceedings in Mathematics & Statistics, vol 257. Springer, Cham. https://doi.org/10.1007/978-3-030-00039-4_6

Download citation

Publish with us

Policies and ethics