Skip to main content

Curve Clustering for Brain Functional Activity and Synchronization

  • Conference paper
  • First Online:
Studies in Neural Data Science (START UP RESEARCH 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 257))

Included in the following conference series:

  • 635 Accesses

Abstract

Functional Magnetic Resonance Imaging (fMRI) has become one of the leading methods for brain mapping in neuroscience and it is an important tool in modern neuroscience investigation. Moreover, the recent advances in fMRI analysis are widely used to define the default state of brain activity, functional connectivity and basal activity. Signal processing schemes have been suggested to analyze the resting state Blood-Oxygenation-Level-Dependent (BOLD) signal from simple correlations to spectral decomposition. Our goal is to determine which brain areas behave similarly in the time domain. To address this question, we apply functional curve clustering methods. We carry out an exploratory study using classical functional clustering of fMRI time series. The analysis confirms the hypothesis of a possible spatial influence on the results and therefore suggests the development of spatial curve clustering methods for brain data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham, C., Cornillon, P.A., Matzner-Løber, E., Molinari, N.: Unsupervised curve clustering using b-splines. Scand. J. Statist. 30(3), 581–595 (2003)

    Article  MathSciNet  Google Scholar 

  2. Craddock, R.C., Jbabdi, S., Yan, C.G., Vogelstein, J.T., Castellanos, F.X., Di Martino, A., Kelly, C., Heberlein, K., Colcombe, S., Milham, M.P.: Imaging human connectomes at the macroscale. Nature Methods 10(6), 524 (2013)

    Article  Google Scholar 

  3. Craven, P., Wahba, G.: Smoothing noisy data with spline functions. Numerische Mathematik 31(4), 377–403 (1978)

    Article  MathSciNet  Google Scholar 

  4. De Boor, C.: A Practical Guide to Splines. Springer, New York (1978)

    Book  Google Scholar 

  5. Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., et al.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3), 968–980 (2006)

    Article  Google Scholar 

  6. Dudoit, S., Fridlyand, J.: A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biol. 3(7), 1–21 (2002)

    Article  Google Scholar 

  7. Fraley, C., Raftery, A.E.: Model-based clustering, discriminant analysis and density estimation. J. Am. Statist. Assoc. 97, 611–631 (2002)

    Article  MathSciNet  Google Scholar 

  8. Fraley, C., Raftery, A.E., Murphy, T.B., Scrucca, L.: mclust Version 4 for R: Normal Mixture Modeling for model-based clustering, classification, and density estimation (2012)

    Google Scholar 

  9. Goense, J., Bohraus, Y., Logothetis, N.K.: fMRI at high spatial resolution: implications for BOLD-models. Front. Computat. Neurosci. 10, 66 (2016)

    Google Scholar 

  10. Goutte, C., Toft, P., Rostrup, E., Nielsen, F.Å., Hansen, L.K.: On clustering fMRI time series. NeuroImage 9(3), 298–310 (1999)

    Article  Google Scholar 

  11. Greve, D.N., Brown, G.G., Mueller, B.A., Glover, G., Liu, T.T., et al.: A survey of the sources of noise in fMRI. Psychometrika 78(3), 396–416 (2013)

    Article  MathSciNet  Google Scholar 

  12. Heller, R., Stanley, D., Yekutieli, D., Rubin, N., Benjamini, Y.: Cluster-based analysis of fMRI data. NeuroImage 33(2), 599–608 (2006)

    Article  Google Scholar 

  13. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)

    Article  Google Scholar 

  14. Jacques, J., Preda, C.: Functional data clustering: a survey. Adv. Data Anal. Classif. 8(3), 231–255 (2014)

    Article  MathSciNet  Google Scholar 

  15. López-Pintado, S., Romo, J.: On the concept of depth for functional data. J. Am. Statist. Assoc. 104(486), 718–734 (2009)

    Article  MathSciNet  Google Scholar 

  16. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA vol. 1, pp. 281–297 (1967)

    Google Scholar 

  17. Monti, M.M.: Statistical analysis of fMRI time-series: a critical review of the GLM approach. Front. Hum. Neurosci. 5, 28 (2011)

    Article  Google Scholar 

  18. Ramsay, J.O., Wickham, H., Graves, S., Hooker, G.: fda: Functional data analysis (2017). https://CRAN.R-project.org/package=fda/

  19. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Statist. Assoc. 66(336), 846–850 (1971)

    Article  Google Scholar 

  20. Sporns, O.: Structure and function of complex brain networks. Dialogues Clin. Neurosci. 15(3), 247–262 (2013)

    Google Scholar 

  21. Stam, C.J.: Modern network science of neurological disorders. Nature Rev. Neurosci. 15(10), 683–695 (2014)

    Article  Google Scholar 

  22. Sun, Y., Genton, M.G.: Functional Boxplots. J. Comput. Graph. Statist. 20(2), 316–334 (2011)

    Article  MathSciNet  Google Scholar 

  23. Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a data set via the gap statistic. J. Royal Statist. Soc. Ser. B (Statist. Methodol.) 63(2), 411–423 (2001)

    Article  MathSciNet  Google Scholar 

  24. Tukey, J.W.: Exploratory Data Analysis, vol. 2. Reading, Mass (1977)

    Google Scholar 

  25. Yeo, B., Ou, W.: Clustering fMRI time series (2004). http://people.csail.mit.edu/ythomas/unpublished/6867fMRI.pdf

Download references

Acknowledgements

We are grateful to Greg Kiar and Eric Bridgeford from NeuroData at Johns Hopkins University, who graciously pre-processed the raw DTI and R-fMRI imaging data available at http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_1.html, using the pipelines ndmg and C-PAC and to the reviewers and The Scientific Committee of StartUp Research for all the suggestions aimed at improving this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaia Bertarelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bertarelli, G., Corbella, A., Di Iorio, J., Gorshechnikova, A., Scott, M. (2018). Curve Clustering for Brain Functional Activity and Synchronization. In: Canale, A., Durante, D., Paci, L., Scarpa, B. (eds) Studies in Neural Data Science. START UP RESEARCH 2017. Springer Proceedings in Mathematics & Statistics, vol 257. Springer, Cham. https://doi.org/10.1007/978-3-030-00039-4_5

Download citation

Publish with us

Policies and ethics