Skip to main content

Hierarchical Growth Is Necessary and (Sometimes) Sufficient to Self-assemble Discrete Self-similar Fractals

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11145))

Abstract

In this paper, we prove that in the abstract Tile Assembly Model (aTAM), an accretion-based model which only allows for a single tile to attach to a growing assembly at each step, there are no tile assembly systems capable of self-assembling the discrete self-similar fractals known as the “H” and “U” fractals. We then show that in a related model which allows for hierarchical self-assembly, the 2-Handed Assembly Model (2HAM), there does exist a tile assembly systems which self-assembles the “U” fractal and conjecture that the same holds for the “H” fractal. This is the first example of discrete self similar fractals which self-assemble in the 2HAM but not in the aTAM, providing a direct comparison of the models and greater understanding of the power of hierarchical assembly.

M. J. Patitz—This author’s research was supported in part by National Science Foundation Grants CCF-1422152 and CAREER-1553166.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note that we use the standard DSSF definition in which DSSF’s are contained within quadrant I of \(\mathbb {N}^2\). However, our impossibility result proofs could be trivially modified to hold for alternate definitions which allow for DSSFs to occupy any set of quadrants.

References

  1. Barth, K., Furcy, D., Summers, S.M., Totzke, P.: Scaled tree fractals do not strictly self-assemble. In: Ibarra, O.H., Kari, L., Kopecki, S. (eds.) UCNC 2014. LNCS, vol. 8553, pp. 27–39. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08123-6_3

    Chapter  Google Scholar 

  2. Cannon, S., et al.: Two hands are better than one (up to constant factors): self-assembly in the 2HAM vs. aTAM. In: Portier, N., Wilke, T. (eds.) STACS. LIPIcs, vol. 20, pp. 172–184. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)

    Google Scholar 

  3. Chalk, C.T., Fernandez, D.A., Huerta, A., Maldonado, M.A., Schweller, R.T., Sweet, L.: Strict self-assembly of fractals using multiple hands. Algorithmica 76, 1–30 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Chen, H.-L., Doty, D.: Parallelism and time in hierarchical self-assembly. In: SODA 2012: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1163–1182. SIAM (2012)

    Chapter  Google Scholar 

  5. Cheng, Q., Aggarwal, G., Goldwasser, M.H., Kao, M.-Y., Schweller, R.T., de Espanés, P.M.: Complexities for generalized models of self-assembly. SIAM J. Comput. 34, 1493–1515 (2005)

    Article  MathSciNet  Google Scholar 

  6. Fujibayashi, K., Hariadi, R., Park, S.H., Winfree, E., Murata, S.: Toward reliable algorithmic self-assembly of DNA tiles: a fixed-width cellular automaton pattern. Nano Lett. 8(7), 1791–1797 (2007)

    Article  Google Scholar 

  7. Hendricks, J., Olsen, M., Patitz, M.J., Rogers, T.A., Thomas, H.: Hierarchical self-assembly of fractals with signal-passing tiles (extended abstract). In: Proceedings of the 22nd International Conference on DNA Computing and Molecular Programming (DNA 22), Munich, Germany, 4–8 September 2016, pp. 82–97. Ludwig-Maximilians-Universitt (2016)

    Google Scholar 

  8. Hendricks, J., Opseth, J.: Self-assembly of 4-sided fractals in the two-handed tile assembly model. In: Patitz, M.J., Stannett, M. (eds.) UCNC 2017. LNCS, vol. 10240, pp. 113–128. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58187-3_9

    Chapter  Google Scholar 

  9. Hendricks, J., Opseth, J., Patitz, MJ., Summers, S.M.: Hierarchical growth is necessary and (sometimes) sufficient to self-assemble discrete self-similar fractals. Technical report 1807.04831, Computing Research Repository (2018)

    Google Scholar 

  10. Jonoska, N., Karpenko, D.: Active tile self-assembly, part 1: universality at temperature 1. Int. J. Found. Comput. Sci. 25(02), 141–163 (2014)

    Article  MathSciNet  Google Scholar 

  11. Jonoska, N., Karpenko, D.: Active tile self-assembly, part 2: self-similar structures and structural recursion. Int. J. Found. Comput. Sci. 25(02), 165–194 (2014)

    Article  MathSciNet  Google Scholar 

  12. Kautz, S., Shutters, B.: Self-assembling rulers for approximating generalized Sierpinski carpets. Algorithmica 67(2), 207–233 (2013)

    Article  MathSciNet  Google Scholar 

  13. Kautz, S.M., Lathrop, J.I.: Self-assembly of the discrete Sierpinski carpet and related fractals. In: Deaton, R., Suyama, A. (eds.) DNA 2009. LNCS, vol. 5877, pp. 78–87. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10604-0_8

    Chapter  MATH  Google Scholar 

  14. Lathrop, J.I., Lutz, J.H., Summers, S.M.: Strict self-assembly of discrete Sierpinski triangles. Theor. Comput. Sci. 410, 384–405 (2009)

    Article  MathSciNet  Google Scholar 

  15. Luhrs, C.: Polyomino-safe DNA self-assembly via block replacement. In: Goel, A., Simmel, F.C., Sosík, P. (eds.) DNA 2008. LNCS, vol. 5347, pp. 112–126. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03076-5_10

    Chapter  MATH  Google Scholar 

  16. Lutz, J.H., Shutters, B.: Approximate self-assembly of the Sierpinski triangle. Theory Comput. Syst. 51(3), 372–400 (2012)

    Article  MathSciNet  Google Scholar 

  17. Patitz, M.J., Rogers, T.A., Schweller, R.T., Summers, S.M., Winslow, A.: Resiliency to multiple nucleation in temperature-1 self-assembly. In: Rondelez, Y., Woods, D. (eds.) DNA 2016. LNCS, vol. 9818, pp. 98–113. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43994-5_7

    Chapter  Google Scholar 

  18. Patitz, M.J., Summers, S.M.: Self-assembly of discrete self-similar fractals. Nat. Comput. 1, 135–172 (2010)

    Article  MathSciNet  Google Scholar 

  19. Rothemund, P.W., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2(12), 2041–2053 (2004)

    Article  Google Scholar 

  20. Winfree, E.: Algorithmic self-assembly of DNA. PhD thesis, California Institute of Technology, June 1998

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Patitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hendricks, J., Opseth, J., Patitz, M.J., Summers, S.M. (2018). Hierarchical Growth Is Necessary and (Sometimes) Sufficient to Self-assemble Discrete Self-similar Fractals. In: Doty, D., Dietz, H. (eds) DNA Computing and Molecular Programming. DNA 2018. Lecture Notes in Computer Science(), vol 11145. Springer, Cham. https://doi.org/10.1007/978-3-030-00030-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00030-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00029-5

  • Online ISBN: 978-3-030-00030-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics