Skip to main content

WaLBerla: Exploiting Massively Parallel Systems for Lattice Boltzmann Simulations

  • Chapter
Parallel Computing

Abstract

In this chapter, a software concept for massively parallel computational fluid dynamics (CFD) applications is introduced. The focus thereby lies on the parallelization, which is based on a domain partitioning scheme named patch concept. This concept also enables a seamless specialization of the partitions to different application features as well as the possibility for further optimization such as memory reduction. It is discussed in detail how our design ensures an efficient and flexible implementation. The suitability and efficiency of this concept is demonstrated and evaluated with the waLBerla project, which aims at the development of an efficient massively parallel lattice Boltzmann framework providing the necessary features for several CFD applications. To discuss the suitability of the parallelization for massively parallel usage, various test scenarios have been investigated on different architectures. These tests include serial, weak and strong scaling experiments up to 810 cores and up to a domain size of 15303 lattice cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Feichtinger, J. Götz, S. Donath, K. Iglberger, U. Rüde, Concepts of waLBerla prototype 0.1, Tech. Rep. 07–10, University of Erlangen-Nuremberg, Computer Science 10 – Systemsimulation (2007).

    Google Scholar 

  2. K. Iglberger, N. Thürey, U. Rüde, Simulation of moving particles in 3D with the Lattice Boltzmann method, Comp. Math. Appl. 55 (7) (2008) 1461–1468.

    Article  MATH  Google Scholar 

  3. C. Binder, C. Feichtinger, H. Schmid, N. Thürey, W. Peukert, U. Rüde, Simulation of the hydrodynamic drag of aggregated particles, J. Colloid Interface Sci. 301 (2006) 155–167.

    Article  Google Scholar 

  4. J. Horbach, D. Frenkel, Lattice-Boltzmann method for the simulation of transport phenomena in charged colloids, Phys. Rev. E 64 (6) (2001) 061507.

    Article  Google Scholar 

  5. M. Stürmer, J. Götz, G. Richter, A. Dörfler, U. Rüde, Blood flow simulation on the Cell Broadband Engine using the lattice Boltzmann method, Tech. Rep. 07–9, University of Erlangen- Nuremberg, Computer Science 10 – Systemsimulation, submitted to the International Conference for Mesoscopic Methods in Engineering and Science, ICMMES (2007).

    Google Scholar 

  6. C. Körner, M. Thies, T. Hofmann, N. Thürey, U. Rüde, Lattice Boltzmann model for free surface flow for modeling foaming, J. Stat. Phys. 121(1-2) (2005) 179–196.

    Article  MATH  MathSciNet  Google Scholar 

  7. N. Thürey, T. Pohl, U. Rüde, M. Oechsner, C. Körner, Optimization and stabilization of LBM free surface flow simulations using adaptive parameterization, Comput. Fluid 35(8–9) (2006) 934–939.

    Article  Google Scholar 

  8. Information on fuel cells, http://www.fuelcells.org (2008).

  9. Information on the HLRB II, http://www.lrz-muenchen.de/services/compute/hlrb/ (2008).

  10. G. McNamara, G. Zanetti, Use of the Boltzman equation to Simulate Lattice Gas Automata, Phys. Rev. Lett. 61 (20) (1988) 2332–2335.

    Article  Google Scholar 

  11. X. He, L.-S. Luo, Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. E 56 (6) (1997) 6811–6817.

    Article  Google Scholar 

  12. M. Junk, A. Klar, L.-S. Luo, Asymptotic analysis of the lattice Boltzmann equation, J. Comput. Phys. 210 (2) (2005) 676–704.

    Article  MATH  MathSciNet  Google Scholar 

  13. X. Shan, H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E 47 (3) (1993) 1815–1819.

    Article  Google Scholar 

  14. T. Zeiser, H.-J. Freund, J. Bernsdorf, P. Lammers, G. Brenner, F. Durst, Detailed Simulation of Transport Processes in Reacting Multi-Species Flows Through Complex Geometries by Means of the Lattice Boltzmann method, in: In High Performance Computing in Science and Engineering ’01, Transactions of the High Performance Computing Center Stuttgart (HLRS), Springer (2002).

    Google Scholar 

  15. P. Asinari, Multiple-relaxation-time lattice boltzmann scheme for homogeneous mixture flows with external force, Phys. Rev. E (Statistical, Nonlinear, and Soft Matter Physics) 77 (5) (2008) 056706.

    MathSciNet  Google Scholar 

  16. A. Artoli, A. Hoekstra, P. Sloot,Mesoscopic simulations of systolic flow in the human abdominal aorta, J. Biomech. 39 (5) (2006) 873–884.

    Article  Google Scholar 

  17. C. Körner, T. Pohl, U. Rüde, N. Thürey, T. Hofmann, FreeWIHR: Lattice Boltzmann methods with free surfaces and their application in material technology, in: A. Bode, F. Durst (Eds.), High Performance Computing in Science and Engineering, Garching 2004, Springer (2005), pp. 225–236.

    Google Scholar 

  18. C. Körner, T. Pohl, U. Rüde, N. Thürey, T. Zeiser, Parallel Lattice Boltzmann Methods for CFD Applications, in: A. Bruaset, A. Tveito (Eds.), Numerical Solution of Partial Differential Equations on Parallel Computers, Vol. 51 of Lecture Notes for Computational Science and Engineering, Springer (2005) Ch. 5, pp. 439–465.

    Google Scholar 

  19. J. Wilke, T. Pohl, M. Kowarschik, U. Rüde, Cache Performance Optimizations for Parallel Lattice Boltzmann Codes, in: Proc. of the EuroPar-03 Conf., Vol. 2790 of Lecture Notes in Computer Science, Springer (2003), pp. 441–450.

    Google Scholar 

  20. G. Wellein, T. Zeiser, G. Hager, S. Donath, On the single processor performance of simple Lattice Boltzmann kernels, Comput. Fluid 35 (8–9) (2006) 910–919.

    Article  Google Scholar 

  21. D. Hänel, Molekulare Gasdynamik, Springer (2004).

    Google Scholar 

  22. D. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models, Springer (2000).

    Google Scholar 

  23. D. Yu, R. Mei, L.-S. Luo, W. Shyy, Viscous flow computation with the method of lattice Boltzmann equation, Prog. Aero. Sci. 39 (5) (2003) 329–367.

    Article  Google Scholar 

  24. Y. H. Qian, D. D’Humiôlres, P. Lallemand, Lattice BGK Models for Navier-Stokes equation, Europhys. Lett. 17 (6) (1992) 479–484.

    Article  MATH  Google Scholar 

  25. J. Götz, Numerical Simulation of Blood Flow with Lattice Boltzmann Methods, Master’s thesis, University of Erlangen-Nuremberg, Computer Science 10 – Systemsimulation (2006).

    Google Scholar 

  26. Information on the Juelicher Initiative Cell Cluster (JUICE), http://www.fz-juelich.de/jsc/service/juice (2008).

  27. Top500, The top 500 supercomputer sites, http://www.top500.org (2008).

  28. T. Zeiser, J. Götz, M. Stürmer, On performance and accuracy of lattice Boltzmann approaches for single phase flow in porous media: A toy became an accepted tool – How to maintain its features despite more and more complex (physical) models and changing trends in high performance computing!?On performance and accuracy of lattice Boltzmann approaches for single phase flow in porous media, in: Proceedings of 3rd Russian-GermanWorkshop on High Performance Computing, Novosibirsk, Springer (2008).

    Google Scholar 

  29. J. D. McCalpin, STREAM: Sustainable memory bandwidth in high performance computers, http://www.cs.virginia.edu/stream/ (1991–2008).

  30. T. Zeiser, Private correspondence with Thomas Zeiser, Regional Computing Center Erlangen (RRZE) (Aug. 2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Feichtinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Feichtinger, C., Götz, J., Donath, S., Iglberger, K., Rüde, U. (2009). WaLBerla: Exploiting Massively Parallel Systems for Lattice Boltzmann Simulations. In: Trobec, R., Vajteršic, M., Zinterhof, P. (eds) Parallel Computing. Springer, London. https://doi.org/10.1007/978-1-84882-409-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-409-6_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-408-9

  • Online ISBN: 978-1-84882-409-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics