Skip to main content

Great Artery and Other Vascular Abnormalities

  • Chapter
  • First Online:
Transesophageal Echocardiography for Congenital Heart Disease

Abstract

Echocardiography is the diagnostic modality of choice in the initial evaluation and serial assessment of most types of pediatric heart disease. The anomalies of a congenital nature that most often affect the great arteries and related vascular structures are frequently first suspected and identified by high-resolution imaging provided by transthoracic echocardiography. Technological advances made during the last several decades allow for complementary noninvasive imaging modalities to be applied when further characterization of these congenital cardiovascular malformations or variants is required. Transesophageal echocardiography (TEE) plays a limited diagnostic role in these anomalies but nonetheless provides major contributions in the care of affected patients. In the intraoperative setting, TEE is able to confirm the presence of selected abnormal vascular structure(s) or connection(s). More importantly, TEE facilitates the detailed evaluation of associated defects, provides for intraoperative monitoring, and allows for assessment of the surgical intervention(s). This chapter discusses the most frequently encountered great artery and vascular anomalies of a congenital nature, focusing on the applications of TEE in the evaluation of these lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knight L, Edwards JE. Right aortic arch. Types and associated cardiac anomalies. Circulation. 1974;50:1047–51.

    CAS  PubMed  Google Scholar 

  2. Mugge A, Daniel WG, Lichtlen PR. Imaging of patent ductus arteriosus by transesophageal color-coded Doppler echocardiography. J Clin Ultrasound. 1991;19:128–9.

    CAS  PubMed  Google Scholar 

  3. Szulc M, Ritter SB. Patent ductus arteriosus in an infant with atrioventricular septal defect and pulmonary hypertension: diagnosis by transesophageal color flow echocardiography. J Am Soc Echocardiogr. 1991;4:194–8.

    CAS  PubMed  Google Scholar 

  4. Takenaka K, Sakamoto T, Shiota T, et al. Diagnosis of patent ductus arteriosus in adults by biplane transesophageal color Doppler flow mapping. Am J Cardiol. 1991;68:691–3.

    CAS  PubMed  Google Scholar 

  5. Shyu KG, Lai LP, Lin SC, et al. Diagnostic accuracy of transesophageal echocardiography for detecting patent ductus arteriosus in adolescents and adults. Chest. 1995;108:1201–5.

    CAS  PubMed  Google Scholar 

  6. Andrade A, Vargas-Barron J, Rijlaarsdam M, et al. Utility of transesophageal echocardiography in the examination of adult patients with patent ductus arteriosus. Am Heart J. 1995;130:543–6.

    CAS  PubMed  Google Scholar 

  7. Krauss D, Weinert L, Lang RM. The role of multiplane transesophageal echocardiography in diagnosing PDA in an adult. Echocardiography. 1996;13:95–8.

    PubMed  Google Scholar 

  8. Chang ST, Hung KC, Hsieh IC, et al. Evaluation of shunt flow by multiplane transesophageal echocardiography in adult patients with isolated patent ductus arteriosus. J Am Soc Echocardiogr. 2002;15:1367–73.

    PubMed  Google Scholar 

  9. Tumbarello R, Sanna A, Cardu G, et al. Usefulness of transesophageal echocardiography in the pediatric catheterization laboratory. Am J Cardiol. 1993;71:1321–5.

    CAS  PubMed  Google Scholar 

  10. Chuang YC, Yin WH, Hsiung MC, et al. Successful transcatheter closure of a residual patent ductus arteriosus with complex anatomy after surgical ligation using an amplatzer ductal occluder guided by live three-dimensional transesophageal echocardiography. Echocardiography. 2011;28:E101–3.

    PubMed  Google Scholar 

  11. Marek T, Zelizko M, Kautzner J. Images in cardiovascular medicine. Real-time 3-dimensional transesophageal echocardiography imaging: adult patent ductus arteriosus before and after transcatheter closure. Circulation. 2009;120:e92–3.

    PubMed  Google Scholar 

  12. Wang KY, Hsieh KS, Yang MW, et al. The use of transesophageal echocardiography to evaluate the effectiveness of patent ductus arteriosus ligation. Echocardiography. 1993;10:53–7.

    CAS  PubMed  Google Scholar 

  13. Lavoie J, Burrows FA, Gentles TL, et al. Transoesophageal echocardiography detects residual ductal flow during video-assisted thoracoscopic patent ductus arteriosus interruption. Can J Anaesth. 1994;41:310–3.

    CAS  PubMed  Google Scholar 

  14. Lavoie J, Javorski JJ, Donahue K, et al. Detection of residual flow by transesophageal echocardiography during video-assisted thoracoscopic patent ductus arteriosus interruption. Anesth Analg. 1995;80:1071–5.

    CAS  PubMed  Google Scholar 

  15. Shiota T, Omoto R, Cobanoglu A, et al. Usefulness of transesophageal imaging of flow convergence region in the operating room for evaluating isolated patent ductus arteriosus. Am J Cardiol. 1997;80:1108–12.

    CAS  PubMed  Google Scholar 

  16. Ho AC, Tan PP, Yang MW, et al. The use of multiplane transesophageal echocardiography to evaluate residual patent ductus arteriosus during video-assisted thoracoscopy in adults. Surg Endosc. 1999;13:975–9.

    CAS  PubMed  Google Scholar 

  17. Hatle L, Anglesen B. Pulsed and continuous wave Doppler in diagnosis and assessment of various heart lesions. In: Hatle L, Anglesen B, editors. Doppler ultrasound in cardiology. Physical principles and clinical applications. Philadelphia: Lea & Febiger; 1985. p. 97–292.

    Google Scholar 

  18. Hiraishi S, Horiguchi Y, Misawa H, et al. Noninvasive Doppler echocardiographic evaluation of shunt flow dynamics of the ductus arteriosus. Circulation. 1987;75:1146–53.

    CAS  PubMed  Google Scholar 

  19. Cloez JL, Isaaz K, Pernot C. Pulsed Doppler flow characteristics of ductus arteriosus in infants with associated congenital anomalies of the heart or great arteries. Am J Cardiol. 1986;57:845–51.

    CAS  PubMed  Google Scholar 

  20. Shiraishi H, Yanagisawa M. Bidirectional flow through the ductus arteriosus in normal newborns: evaluation by Doppler color flow imaging. Pediatr Cardiol. 1991;12:201–5.

    CAS  PubMed  Google Scholar 

  21. Serwer GA, Armstrong BE, Anderson PA. Nonivasive detection of retrograde descending aortic flow in infants using continuous wave doppler ultrasonography. Implications for diagnosis of aortic run-off lesions. J Pediatr. 1980;97:394–400.

    CAS  PubMed  Google Scholar 

  22. Musewe NN, Smallhorn JF, Benson LN, et al. Validation of Doppler-derived pulmonary arterial pressure in patients with ductus arteriosus under different hemodynamic states. Circulation. 1987;76:1081–91.

    CAS  PubMed  Google Scholar 

  23. Snider AR. The ductus arteriosus: a window for assessment of pulmonary artery pressures? J Am Coll Cardiol. 1990;15:457–8.

    CAS  PubMed  Google Scholar 

  24. Marx GR, Allen HD, Goldberg SJ. Doppler echocardiographic estimation of systolic pulmonary artery pressure in patients with aortic-pulmonary shunts. J Am Coll Cardiol. 1986;7:880–5.

    CAS  PubMed  Google Scholar 

  25. Milan A, Magnino C, Veglio F. Echocardiographic indexes for the non-invasive evaluation of pulmonary hemodynamics. J Am Soc Echocardiogr. 2010;23:225–39; quiz 332–4.

    PubMed  Google Scholar 

  26. Neufeld HN, Lester RG, Adams PJ, et al. Aorticopulmonary septal defect. Am J Cardiol. 1962;9:12–25.

    CAS  PubMed  Google Scholar 

  27. Mori K, Ando M, Takao A, et al. Distal type of aortopulmonary window. Report of 4 cases. Br Heart J. 1978;40:681–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Kutsche LM, Van Mierop LH. Anatomy and pathogenesis of aorticopulmonary septal defect. Am J Cardiol. 1987;59:443–7.

    CAS  PubMed  Google Scholar 

  29. Richardson JV, Doty DB, Rossi NP, et al. The spectrum of anomalies of aortopulmonary septation. J Thorac Cardiovasc Surg. 1979;78:21–7.

    CAS  PubMed  Google Scholar 

  30. Ho SY, Gerlis LM, Anderson C, et al. The morphology of aortopulmonary windows with regard to their classification and morphogenesis. Cardiol Young. 1994;4:146–55.

    Google Scholar 

  31. Murin P, Sinzobahamvya N, Blaschczok HC, et al. Aortopulmonary window associated with interrupted aortic arch: report of surgical repair of eight cases and review of literature. Thorac Cardiovasc Surg. 2012;60:215–20.

    PubMed  Google Scholar 

  32. Pace Napoleone C, Oppido G, Angeli E, et al. Aortopulmonary window and anomalous coronary artery: an exceptional association. Ann Thorac Surg. 2011;91:1272–4.

    PubMed  Google Scholar 

  33. Stamato T, Benson LN, Smallhorn JF, et al. Transcatheter closure of an aortopulmonary window with a modified double umbrella occluder system. Cathet Cardiovasc Diagn. 1995;35:165–7.

    CAS  PubMed  Google Scholar 

  34. Tulloh RM, Rigby ML. Transcatheter umbrella closure of aorto-pulmonary window. Heart. 1997;77:479–80.

    CAS  PubMed  Google Scholar 

  35. Jureidini SB, Spadaro JJ, Rao PS. Successful transcatheter closure with the buttoned device of aortopulmonary window in an adult. Am J Cardiol. 1998;81:371–2.

    CAS  PubMed  Google Scholar 

  36. Srivastava A, Radha AS. Transcatheter closure of a large aortopulmonary window with severe pulmonary arterial hypertension beyond infancy. J Invasive Cardiol. 2012;24:E24–6.

    PubMed  Google Scholar 

  37. Doty DB, Richardson JV, Falkovsky GE, et al. Aortopulmonary septal defect: hemodynamics, angiography, and operation. Ann Thorac Surg. 1981;32:244–50.

    CAS  PubMed  Google Scholar 

  38. Hew CC, Bacha EA, Zurakowski D, et al. Optimal surgical approach for repair of aortopulmonary window. Cardiol Young. 2001;11:385–90.

    CAS  PubMed  Google Scholar 

  39. Jonas RA. Patent ductus arteriosus, aortopulmonary window, sinus of valsalva fistula, aortoventricular tunnel. In: Jonas RA, editor. Comprehensive surgical management of congenital heart disease. New York: Arnold; 2004. p. 195–9.

    Google Scholar 

  40. Rice MJ, Seward JB, Hagler DJ, et al. Visualization of aortopulmonary window by two-dimensional echocardiography. Mayo Clin Proc. 1982;57:482–7.

    CAS  PubMed  Google Scholar 

  41. Smallhorn JF, Anderson RH, Macartney FJ. Two dimensional echocardiographic assessment of communications between ascending aorta and pulmonary trunk or individual pulmonary arteries. Br Heart J. 1982;47:563–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Lau KC, Calcaterra G, Miller GA, et al. Aorto-pulmonary window. J Cardiovasc Surg (Torino). 1982;23:21–7.

    CAS  Google Scholar 

  43. Alboliras ET, Chin AJ, Barber G, et al. Detection of aortopulmonary window by pulsed and color Doppler echocardiography. Am Heart J. 1988;115:900–2.

    CAS  PubMed  Google Scholar 

  44. Balaji S, Burch M, Sullivan ID. Accuracy of cross-sectional echocardiography in diagnosis of aortopulmonary window. Am J Cardiol. 1991;67:650–3.

    CAS  PubMed  Google Scholar 

  45. Mahle WT, Kreeger J, Silverman NH. Echocardiography of the aortopulmonary window, aorto-ventricular tunnels, and aneurysm of the sinuses of Valsalva. Cardiol Young. 2010;20 Suppl 3:100–6.

    PubMed  Google Scholar 

  46. Singh A, Mehmood F, Romp RL, et al. Live/Real time three-dimensional transthoracic echocardiographic assessment of aortopulmonary window. Echocardiography. 2008;25:96–9.

    PubMed  Google Scholar 

  47. Samdarshi TE, Morrow WR, Nanda NC, et al. Transesophageal echocardiography in aortopulmonary communications. Echocardiography. 1991;8:383–95.

    CAS  PubMed  Google Scholar 

  48. Barnes ME, Mitchell ME, Tweddell JS. Aortopulmonary window. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2011;14:67–74.

    PubMed  Google Scholar 

  49. Contro S, Miller RA, White H, et al. Bronchial obstruction due to pulmonary artery anomalies. I. Vascular sling. Circulation. 1958;17:418–23.

    CAS  PubMed  Google Scholar 

  50. Castaneda AR. Pulmonary artery sling. Ann Thorac Surg. 1979;28:210–1.

    CAS  PubMed  Google Scholar 

  51. Adam MP, Schelley S, Gallagher R, et al. Clinical features and management issues in Mowat-Wilson syndrome. Am J Med Genet A. 2006;140:2730–41.

    PubMed  Google Scholar 

  52. Strenge S, Heinritz W, Zweier C, et al. Pulmonary artery sling and congenital tracheal stenosis in another patient with Mowat-Wilson syndrome. Am J Med Genet A. 2007;143A:1528–30.

    CAS  PubMed  Google Scholar 

  53. Backer CL, Russell HM, Kaushal S, et al. Pulmonary artery sling: current results with cardiopulmonary bypass. J Thorac Cardiovasc Surg. 2012;143:144–51.

    PubMed  Google Scholar 

  54. Newman B, Meza MP, Towbin RB, et al. Left pulmonary artery sling: diagnosis and delineation of associated tracheobronchial anomalies with MR. Pediatr Radiol. 1996;26:661–8.

    CAS  PubMed  Google Scholar 

  55. Sade RM, Rosenthal A, Fellows K, et al. Pulmonary artery sling. J Thorac Cardiovasc Surg. 1975;69:333–46.

    CAS  PubMed  Google Scholar 

  56. Berdon WE, Baker DH, Wung JT, et al. Complete cartilage-ring tracheal stenosis associated with anomalous left pulmonary artery: the ring-sling complex. Radiology. 1984;152:57–64.

    CAS  PubMed  Google Scholar 

  57. Gikonyo BM, Jue KL, Edwards JE. Pulmonary vascular sling: report of seven cases and review of the literature. Pediatr Cardiol. 1989;10:81–9.

    CAS  PubMed  Google Scholar 

  58. Binet JP, Longlois J. Aortic arch anomalies in children and infants. J Thorac Cardiovasc Surg. 1977;73:248–52.

    CAS  PubMed  Google Scholar 

  59. Backer CL. Vascular rings, slings, and tracheal rings. Mayo Clin Proc. 1993;68:1131–3.

    CAS  PubMed  Google Scholar 

  60. Zhong YM, Jaffe RB, Zhu M, et al. CT assessment of tracheobronchial anomaly in left pulmonary artery sling. Pediatr Radiol. 2010;40:1755–62.

    PubMed  Google Scholar 

  61. Backer CL, Mavroudis C, Dunham ME, et al. Pulmonary artery sling: results with median sternotomy, cardiopulmonary bypass, and reimplantation. Ann Thorac Surg. 1999;67:1738–44; discussion 1744–5.

    CAS  PubMed  Google Scholar 

  62. Jonas RA, Spevak PJ, McGill T, et al. Pulmonary artery sling: primary repair by tracheal resection in infancy. J Thorac Cardiovasc Surg. 1989;97:548–50.

    CAS  PubMed  Google Scholar 

  63. Fiore AC, Brown JW, Weber TR, et al. Surgical treatment of pulmonary artery sling and tracheal stenosis. Ann Thorac Surg. 2005;79:38–46; discussion 38–46.

    PubMed  Google Scholar 

  64. Oshima Y, Yamaguchi M, Yoshimura N, et al. Management of pulmonary artery sling associated with tracheal stenosis. Ann Thorac Surg. 2008;86:1334–8.

    PubMed  Google Scholar 

  65. Huang SC, Wu ET, Wang CC, et al. Surgical management of pulmonary artery sling: trachea diameter and outcomes with or without tracheoplasty. Pediatr Pulmonol. 2012;47:903–8.

    PubMed  Google Scholar 

  66. McCray P, Grandgeorge S, Smith W, et al. Cine CT diagnosis of pulmonary artery sling. Pediatr Radiol. 1986;16:508–10.

    CAS  PubMed  Google Scholar 

  67. Yeager SB, Chin AJ, Sanders SP. Two-dimensional echocardiographic diagnosis of pulmonary artery sling in infancy. J Am Coll Cardiol. 1986;7:625–9.

    CAS  PubMed  Google Scholar 

  68. Gnanapragasam JP, Houston AB, Jamieson MP. Pulmonary artery sling: definitive diagnosis by colour Doppler flow mapping avoiding cardiac catheterisation. Br Heart J. 1990;63:251–2.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Murdison KA, Andrews BA, Chin AJ. Ultrasonographic display of complex vascular rings. J Am Coll Cardiol. 1990;15:1645–53.

    CAS  PubMed  Google Scholar 

  70. Lillehei CW, Colan S. Echocardiography in the preoperative evaluation of vascular rings. J Pediatr Surg. 1992;27:1118–20; discussion 1120–1.

    CAS  PubMed  Google Scholar 

  71. van Son JA, Julsrud PR, Hagler DJ, et al. Imaging strategies for vascular rings. Ann Thorac Surg. 1994;57:604–10.

    PubMed  Google Scholar 

  72. Backer CL. Diagnostic issues and indications for surgery in patients with pulmonary artery sling. Circulation. 1998;98:188–9.

    CAS  PubMed  Google Scholar 

  73. Lee KH, Yoon CS, Choe KO, et al. Use of imaging for assessing anatomical relationships of tracheobronchial anomalies associated with left pulmonary artery sling. Pediatr Radiol. 2001;31:269–78.

    CAS  PubMed  Google Scholar 

  74. Newman B, Cho Y. Left pulmonary artery sling—anatomy and imaging. Semin Ultrasound CT MR. 2010;31:158–70.

    PubMed  Google Scholar 

  75. Erickson LC, Cocalis MW, George L. Partial anomalous left pulmonary artery: new evidence on the development of the pulmonary artery sling. Pediatr Cardiol. 1996;17:319–21.

    CAS  PubMed  Google Scholar 

  76. Tateishi A, Kawada M. Partial form of a pulmonary artery sling. Ann Thorac Surg. 2009;87:965.

    PubMed  Google Scholar 

  77. Nakajima H, Satomi G, Nakazawa M, et al. Color Doppler and transesophageal echocardiography of vascular sling. Heart Vessels. 1992;7:99–103.

    CAS  PubMed  Google Scholar 

  78. Lin CR, Tsai SK, Wang MJ, et al. Airway management and transesophageal echocardiographic monitoring for pulmonary artery sling. J Formos Med Assoc. 1999;98:863–5.

    CAS  PubMed  Google Scholar 

  79. Kutsche LM, Van Mierop LH. Anomalous origin of a pulmonary artery from the ascending aorta: associated anomalies and pathogenesis. Am J Cardiol. 1988;61:850–6.

    CAS  PubMed  Google Scholar 

  80. Edasery B, Sharma M, Vaddigiri V, et al. Hemitruncus presenting in an adult. A case report. Angiology. 1996;47:1023–6.

    CAS  PubMed  Google Scholar 

  81. Aru GM, English WP, Gaymes CH, et al. Origin of the left pulmonary artery from the aorta: embryologic considerations. Ann Thorac Surg. 2001;71:1008–10.

    CAS  PubMed  Google Scholar 

  82. Nakamura Y, Yasui H, Kado H, et al. Anomalous origin of the right pulmonary artery from the ascending aorta. Ann Thorac Surg. 1991;52:1285–91.

    CAS  PubMed  Google Scholar 

  83. Sotomora RF, Edwards JE. Anatomic identification of so-called absent pulmonary artery. Circulation. 1978;57:624–33.

    CAS  PubMed  Google Scholar 

  84. Wu QY, Yang XB. Anomalous origin of the pulmonary artery from the right coronary artery. Ann Thorac Surg. 2001;72:1396–8.

    CAS  PubMed  Google Scholar 

  85. Presbitero P, Bull C, Haworth SG, et al. Absent or occult pulmonary artery. Br Heart J. 1984;52:178–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. McCaffrey F. Around pediheart: absent pulmonary artery. Pediatr Cardiol. 2001;22:332.

    CAS  PubMed  Google Scholar 

  87. Pfefferkorn JR, Loser H, Pech G, et al. Absent pulmonary artery. A hint to its embryogenesis. Pediatr Cardiol. 1982;3:283–6.

    CAS  PubMed  Google Scholar 

  88. Apostolopoulou SC, Kelekis NL, Brountzos EN, et al. “Absent” pulmonary artery in one adult and five pediatric patients: imaging, embryology, and therapeutic implications. AJR Am J Roentgenol. 2002;179:1253–60.

    PubMed  Google Scholar 

  89. Apostolopoulou SC, Kelekis NL. Anomalous origin of pulmonary artery from the innominate artery. Pediatr Cardiol. 2004;25:565.

    CAS  PubMed  Google Scholar 

  90. Prifti E, Bonacchi M, Murzi B, et al. Anomalous origin of the left pulmonary artery from the aorta. Our experience and literature review. Heart Vessels. 2003;18:79–84.

    PubMed  Google Scholar 

  91. Peng EW, Shanmugam G, Macarthur KJ, et al. Ascending aortic origin of a branch pulmonary artery—surgical management and long-term outcome. Eur J Cardiothorac Surg. 2004;26:762–6.

    PubMed  Google Scholar 

  92. Morgan JR. Left pulmonary artery from ascending aorta in tetralogy of Fallot. Circulation. 1972;45:653–7.

    CAS  PubMed  Google Scholar 

  93. Fontana GP, Spach MS, Effmann EL, et al. Origin of the right pulmonary artery from the ascending aorta. Ann Surg. 1987;206:102–13.

    CAS  PubMed  Google Scholar 

  94. Santos MA, Azevedo VM. Anomalous origin of a pulmonary artery from the ascending aorta: surgical repair resolving pulmonary arterial hypertension. Arq Bras Cardiol. 2004;83(503–7):498–502.

    Google Scholar 

  95. Fong LV, Anderson RH, Siewers RD, et al. Anomalous origin of one pulmonary artery from the ascending aorta: a review of echocardiographic, catheter, and morphological features. Br Heart J. 1989;62:389–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Penkoske PA, Castaneda AR, Fyler DC, et al. Origin of pulmonary artery branch from ascending aorta. Primary surgical repair in infancy. J Thorac Cardiovasc Surg. 1983;85:537–45.

    CAS  PubMed  Google Scholar 

  97. Mee RB. Surgical repair of hemitruncus: principles and techniques. J Card Surg. 1987;2:247–56.

    CAS  PubMed  Google Scholar 

  98. Nathan M, Rimmer D, Piercey G, et al. Early repair of hemitruncus: excellent early and late outcomes. J Thorac Cardiovasc Surg. 2007;133:1329–35.

    PubMed  Google Scholar 

  99. Prifti E, Bonacchi M, Murzi B, et al. Anomalous origin of the right pulmonary artery from the ascending aorta. J Card Surg. 2004;19:103–12.

    PubMed  Google Scholar 

  100. Ishizawa E, Horiuchi T, Tadokoro M, et al. Diagnosis and surgical treatment of “angiographically absent pulmonary artery syndrome”. Tohoku J Exp Med. 1978;125:1–9.

    CAS  PubMed  Google Scholar 

  101. Moreno-Cabral RJ, McNamara JJ, Reddy VJ, et al. Unilateral absent pulmonary artery: surgical repair with a new technique. J Thorac Cardiovasc Surg. 1991;102:463–5.

    CAS  PubMed  Google Scholar 

  102. Duncan WJ, Freedom RM, Olley PM, et al. Two-dimensional echocardiographic identification of hemitruncus: anomalous origin of one pulmonary artery from ascending aorta with the other pulmonary artery arising normally from right ventricle. Am Heart J. 1981;102:892–6.

    CAS  PubMed  Google Scholar 

  103. Warnes CA. Bicuspid aortic valve and coarctation: two villains part of a diffuse problem. Heart. 2003;89:965–6.

    CAS  PubMed  Google Scholar 

  104. Connolly HM, Jr H, Brown RDJ, et al. Intracranial aneurysms in patients with coarctation of the aorta: a prospective magnetic resonance angiographic study of 100 patients. Mayo Clin Proc. 2003;78:1491–9.

    PubMed  Google Scholar 

  105. Shone JD, Sellers RD, Anderson RC, et al. The developmental complex of “parachute mitral valve,” supravalvular ring of left atrium, subaortic stenosis, and coarctation of aorta. Am J Cardiol. 1963;11:714–25.

    CAS  PubMed  Google Scholar 

  106. Kenny D, Hijazi ZM. Coarctation of the aorta: from fetal life to adulthood. Cardiol J. 2011;18:487–95.

    PubMed  Google Scholar 

  107. Duffy CI, Plehn JF. Transesophageal echocardiographic assessment of aortic coarctation using color, flow-directed Doppler sampling. Chest. 1994;105:286–8.

    CAS  PubMed  Google Scholar 

  108. Engvall J, Sjoqvist L, Nylander E, et al. Biplane transoesophageal echocardiography, transthoracic Doppler, and magnetic resonance imaging in the assessment of coarctation of the aorta. Eur Heart J. 1995;16:1399–409.

    CAS  PubMed  Google Scholar 

  109. Trehan VK, Bhardwaj S, Rastogi P, et al. Multiplane transoesophageal echocardiography in an adult with coarctation of aorta. Indian Heart J. 1996;48:707–9.

    CAS  PubMed  Google Scholar 

  110. Skinner JR, Bexton R, Wren C. Aortic coarctation endarteritis and aneurysm: diagnosis by transoesophageal echocardiography. Int J Cardiol. 1992;34:216–8.

    CAS  PubMed  Google Scholar 

  111. Thwaites BK, Stamatos JM, Crowl FD, et al. Transesophageal echocardiographic diagnosis of intraaortic thrombus during coarctation repair. Anesthesiology. 1992;76:638–9.

    CAS  PubMed  Google Scholar 

  112. Chatrath R, Hagler DJ. Improved imaging of aortic coarctation using an intracardiac probe for transesophageal echocardiography. Tex Heart Inst J. 2004;31:194–5.

    PubMed Central  PubMed  Google Scholar 

  113. Kinsara A, Chan KL. Noninvasive imaging modalities in coarctation of the aorta. Chest. 2004;126:1016–8.

    PubMed  Google Scholar 

  114. Stern H, Erbel R, Schreiner G, et al. Coarctation of the aorta: quantitative analysis by transesophageal echocardiography. Echocardiography. 1987;4:387–95.

    Google Scholar 

  115. Gopal AS, Arora NS, Vardanian S, et al. Utility of transesophageal echocardiography for the characterization of cardiovascular anomalies associated with Turner’s syndrome. J Am Soc Echocardiogr. 2001;14:60–2.

    CAS  PubMed  Google Scholar 

  116. Rudolph AM, Heymann MA, Spitznas U. Hemodynamic considerations in the development of narrowing of the aorta. Am J Cardiol. 1972;30:514–25.

    CAS  PubMed  Google Scholar 

  117. Loffredo CA, Ferencz C, Wilson PD, et al. Interrupted aortic arch: an epidemiologic study. Teratology. 2000;61:368–75.

    CAS  PubMed  Google Scholar 

  118. Celoria GC, Patton RB. Congenital absence of the aortic arch. Am Heart J. 1959;58:407–13.

    CAS  PubMed  Google Scholar 

  119. Powell CB, Stone FM, Atkins DL, et al. Operative mortality and frequency of coexistent anomalies in interruption of the aortic arch. Am J Cardiol. 1997;79:1147–8.

    CAS  PubMed  Google Scholar 

  120. Ramaswamy P, Lytrivi ID, Thanjan MT, et al. Frequency of aberrant subclavian artery, arch laterality, and associated intracardiac anomalies detected by echocardiography. Am J Cardiol. 2008;101:677–82.

    PubMed  Google Scholar 

  121. Schreiber C, Eicken A, Vogt M, et al. Repair of interrupted aortic arch: results after more than 20 years. Ann Thorac Surg. 2000;70:1896–9; discussion 1899–900.

    CAS  PubMed  Google Scholar 

  122. Tchervenkov CI, Jacobs JP, Sharma K, et al. Interrupted aortic arch: surgical decision making. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2005:92–102.

    Google Scholar 

  123. Flint JD, Gentles TL, MacCormick J, et al. Outcomes using predominantly single-stage approach to interrupted aortic arch and associated defects. Ann Thorac Surg. 2010;89:564–9.

    PubMed  Google Scholar 

  124. Dillman JR, Yarram SG, D’Amico AR, et al. Interrupted aortic arch: spectrum of MRI findings. AJR Am J Roentgenol. 2008;190:1467–74.

    PubMed  Google Scholar 

  125. Geva T, Hornberger LK, Sanders SP, et al. Echocardiographic predictors of left ventricular outflow tract obstruction after repair of interrupted aortic arch. J Am Coll Cardiol. 1993;22:1953–60.

    CAS  PubMed  Google Scholar 

  126. Jacobs ML, Rychik J, Murphy JD, et al. Results of Norwood’s operation for lesions other than hypoplastic left heart syndrome. J Thorac Cardiovasc Surg. 1995;110:1555–61; discussion 1561–2.

    CAS  PubMed  Google Scholar 

  127. Rychik J, Murdison KA, Chin AJ, et al. Surgical management of severe aortic outflow obstruction in lesions other than the hypoplastic left heart syndrome: use of a pulmonary artery to aorta anastomosis. J Am Coll Cardiol. 1991;18:809–16.

    CAS  PubMed  Google Scholar 

  128. Apfel HD, Levenbraun J, Quaegebeur JM, et al. Usefulness of preoperative echocardiography in predicting left ventricular outflow obstruction after primary repair of interrupted aortic arch with ventricular septal defect. Am J Cardiol. 1998;82:470–3.

    CAS  PubMed  Google Scholar 

  129. Russell HM, Forsberg K, Backer CL, et al. Outcomes of radial incision of the tricuspid valve for ventricular septal defect closure. Ann Thorac Surg. 2011;92:685–90; discussion 690.

    PubMed  Google Scholar 

  130. Hillman HD, Mavroudis C, Backer CL. Patent ductus ateriousus. In: Mavroudis C, Backer CL, editors. Pediatric cardiac surgery. 3rd ed. Philadelphia: Mosby; 2003. p. 223–33.

    Google Scholar 

  131. Russell IA, Rouine-Rapp K, Stratmann G, Miller-Hance WC. Congenital heart disease in the adult: a review with internet-accessible transesophageal echocardiographic images. Anesth Analg. 2006;102(3):694–723.

    PubMed  Google Scholar 

  132. Cahalan MK. Intraoperative transesophageal echocardiography: an interactive text and atlas. New York: Churchill Livingstone Interactive Publication; 1996.

    Google Scholar 

  133. Gaynor WJ. Aortopulmonary window and aortic origin of a pulmonary artery. In: Mavroudis C, Backer CL, editors. Pediatric cardiac surgery. 3rd ed. Philadelphia: Mosby; 2003. p. 353–60.

    Google Scholar 

  134. Backer CL, Mavroudis C. Vascular rings and pulmonary artery sling. In: Mavroudis C, Backer CL, editors. Pediatric cardiac surgery. 3rd ed. Philadelphia: Mosby; 2003. p. 234–50.

    Google Scholar 

  135. Backer CL, Mavroudis C. Coarctation of the aorta. In: Mavroudis C, Backer CL, editors. Pediatric cardiac surgery. 3rd ed. Philadelphia: Mosby; 2003. p. 251–72.

    Google Scholar 

  136. Jonas RA. Interrupted aortic arch. In: Mavroudis C, Backer CL, editors. Pediatric cardiac surgery. 3rd ed. Philadelphia: Mosby; 2003. p. 273–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanda C. Miller-Hance MD, FACC, FASE .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Patent ductus arteriosus. Upper esophageal pulmonary artery long axis video demonstrating left-to-right shunting across a patent ductus arteriosus (PDA, arrow). AO aorta, PA main pulmonary artery (MOV 564 kb)

Patent ductus arteriosus. Mid esophageal right ventricular inflow-outflow view depicts flow (blue signal) across a patent ductus arteriosus (PDA) into main pulmonary artery (MPA). AO aorta (MOV 2137 kb)

125052_1_En_13_MOESM3_ESM.mov

Patent ductus arteriosus. Upper esophageal aortic arch short axis view demonstrating aliased flow (between the arrows) corresponding to a restrictive patent ductus arteriosus. Ao aorta, PA pulmonary artery (Reproduced with permission from Russell et al. [131]) (MOV 254 kb)

Tricuspid regurgitation. Color Doppler interrogation of the tricuspid valve in two different planes demonstrates moderate regurgitation and a peak velocity of the regurgitant jet that reaches 4 m per second. This jet velocity predicts an elevated right ventricular and pulmonary artery systolic pressure in this infant. Ao aorta, LA left atrium, LV left ventricle, RA right atrium, RV right ventricle (MOV 5116 kb)

Left heart dilation resulting from a patent ductus arteriosus. Mid esophageal four chamber view obtained in a patient with a ductus arteriosus and left to right shunting. The left sided structures are dilated, particularly the left atrium, due to the volume overload. A tricuspid valve aneurysm is seen without evidence of ventricular level shunting. LA left atrium, LV left ventricle, RA right atrium, RV right ventricle (MOV 1821 kb)

Aortopulmonary window. Mid esophageal aortic valve short axis view in infant with an aortopulmonary (AP) window. Note the echocardiographic drop out in the region between the arterial roots (arrow), corresponding to faulty aortopulmonary septation, and the shunting by color Doppler. AO aorta, PA pulmonary artery (MOV 2696 kb)

Aortopulmonary window. View of the ascending aorta obtained at the upper esophageal level depicting an aortopulmonary (AP) window (arrow). The spectral Doppler tracing across the right pulmonary artery displays continuous forward flow during diastole as a result of the abnormal aortopulmonary connection. AO aorta, PA pulmonary artery, RV right ventricle (MOV 1311 kb)

Aortopulmonary window. Postoperative transesophageal echocardiogram in the mid esophageal ascending aortic long axis view depicts the bright region along the wall of the ascending aorta (arrow) corresponding to the pericardial patch placed to obliterate the abnormal communication. Color Doppler interrogation across the right pulmonary artery does not suggest concerning obstruction. Ao aorta, MPA main pulmonary artery, RPA right pulmonary artery (MOV 404 kb)

Pulmonary artery sling. Upper esophageal pulmonary artery long axis view of a pulmonary artery sling in an infant. The abnormal takeoff of the left pulmonary artery from the right pulmonary artery is seen. Note the absence of the normal main pulmonary artery bifurcation, which should be seen in a more proximal relationship to the pulmonary valve. The course of the anomalous vessel with respect to the trachea (asterisk) is noted. AO aorta, LPA left pulmonary artery, MPA main pulmonary artery, RPA right pulmonary artery (MOV 1548 kb)

Pulmonary artery sling. Color Doppler image of the same cross-section depicted in Video 13.9 obtained in a zoom mode. Note flow into the left pulmonary artery (LPA) as it arises from the right pulmonary artery (RPA). AO aorta, MPA main pulmonary artery (MOV 1163 kb)

Main pulmonary artery bifurcation. Normal branching of the main pulmonary artery (MPA) into the right (RPA) and left (LPA) pulmonary arteries as imaged from the upper esophageal pulmonary artery long axis view. AO aorta (MOV 241 kb)

Main pulmonary artery bifurcation. Modified deep transgastric long axis image obtained in an infant with double outlet right ventricle and a subaortic ventricular septal defect to demonstrate the normal pulmonary artery bifurcation as seen in cross-section from this window. AO aorta, LA left atrium, LPA left pulmonary artery, RA right atrium, RPA right pulmonary artery (MOV 1685 kb)

Aortic origin of right pulmonary artery. Upper esophageal pulmonary artery long axis view displaying only the left pulmonary artery (LPA) as it arises from the main pulmonary artery (MPA). Note the absence of the normal pulmonary artery confluence in this patient, due to anomalous origin of the right pulmonary artery from the aorta (AO) (MOV 806 kb)

Aortic origin of right pulmonary artery. Long axis plane imaging using a biplane transesophageal probe displaying anomalous origin of the right pulmonary artery (RPA) from the aorta (AO). LA left atrium, RA right atrium, RV right ventricle (MOV 3526 kb)

Aortic origin of right pulmonary artery. Transverse plane sweep in same patient as depicted in Video 13.14 demonstrating anomalous origin of the right pulmonary artery (RPA) from the aorta (AO) by two-dimensional and color Doppler imaging. A catheter is seen in the superior vena cava. MPA main pulmonary artery, RA right atrium (MOV 4886 kb)

Anomalous origin of right pulmonary artery. Mid esophageal ascending aortic long axis view displaying anomalous origin of right pulmonary artery from the ascending aorta (AO). Note the more distal origin of the anomalous vessel (arrow) as compared to that seen in the patient shown in Videos 13.14 and 13.15. Flow into the anomalous pulmonary artery is demonstrated by color and spectral Doppler interrogation. A perimembranous ventricular septal defect is briefly seen in this video. PA main pulmonary artery (MOV 2438 kb)

Coarctation of the aorta. Mid esophageal descending aorta long axis view depicting narrowing at the level of the thoracic descending aorta (arrow) consistent with coarctation of the aorta. (Reproduced with permission from Russell et al. [131]) (MOV 468 kb)

Coarctation of the aorta. Sweep obtained from the upper esophageal window (upper esophageal short axis view) demonstrating the aortic arch in short axis (Arch), a large patent ductus arteriosus (PDA) and the left pulmonary artery (LPA). As the probe is slightly advanced and rotated to the left, the descending aorta (AoDT) is displayed longitudinally; the LPA is again seen in this view. A discrete area of narrowing is noted (arrow) corresponding to a coarctation. Color Doppler imaging displays turbulent flow across the region of obstruction (MPG 10322 kb)

Interrupted aortic arch. Two-dimensional mid esophageal four-chamber view and corresponding color flow mapping in an infant with interrupted aortic arch demonstrating a large posteriorly malaligned ventricular septal defect, hypoplastic subaortic region, aortic annulus, and ascending aorta. AO aorta, LA left atrium, RV right ventricle, LV left ventricle (MOV 1549 kb)

Interrupted aortic arch. Mid esophageal aortic valve long axis view obtained from the same infant as shown in Video 13.19, demonstrating the ventricular septal defect and marked discrepancy in the sizes of the arterial roots. AO aorta, PA main pulmonary artery (MOV 875 kb)

Interrupted aortic arch. Deep transgastric long axis image from the same patient as shown in Videos 13.19 and 13.20 demonstrating the extent of the ventricular septal defect and subaortic narrowing. AO aorta, LA left ventricle, LV left ventricle RA right atrium, RV right ventricle (MOV 2006 kb)

Interrupted aortic arch. Mid esophageal ascending aortic short axis view demonstrates a severely hypoplastic ascending aorta (AO). Note the dilated pulmonary artery (PA) (MOV 1522 kb)

Interrupted aortic arch. Intraoperative images from the mid esophageal four-chamber view following aortic arch advancement, aortic (AO) augmentation, subaortic resection, and closure of the ventricular septal defect (VSD) in the infant with interrupted aortic arch shown in previous videos. Note the large pericardial VSD patch and the relatively small subaortic area, aortic annulus, and aortic root. In the presence of moderately decreased left ventricular systolic function, no significant gradient was recorded across the left ventricular outflow tract. Note that an adequate spectral Doppler tracing could be obtained of the outflow tract in this particular TEE view. LA left atrium, LV left ventricle, RV right ventricle (MOV 3414 kb)

Interrupted aortic arch. The same findings noted in Video 13.23 following surgical intervention are confirmed in the mid esophageal long axis view. Trace intermittent aortic regurgitation is seen. AO aorta, LA left atrium, LV left ventricle, PA main pulmonary artery, RV right ventricle, VSD ventricular septal defect (MOV 1514 kb)

Interrupted aortic arch. Postoperative, mid esophageal, four-chamber view demonstrating a dilated left ventricle (LV) with markedly decreased systolic function in the same infant depicted in prior videos. Moderate mitral valve regurgitation is also seen. AO aorta, LA left atrium, VSD ventricular septal defect (MOV 1408 kb)

Video 13.3

Patent ductus arteriosus. Upper esophageal aortic arch short axis view demonstrating aliased flow (between the arrows) corresponding to a restrictive patent ductus arteriosus. Ao aorta, PA pulmonary artery (Reproduced with permission from Russell et al. [131]) (MOV 254 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Miller-Hance, W.C. (2014). Great Artery and Other Vascular Abnormalities. In: Wong, P., Miller-Hance, W. (eds) Transesophageal Echocardiography for Congenital Heart Disease. Springer, London. https://doi.org/10.1007/978-1-84800-064-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-064-3_13

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-061-2

  • Online ISBN: 978-1-84800-064-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics