Skip to main content

Self-Organizing Digital Systems

  • Chapter
  • First Online:
Advances in Applied Self-organizing Systems

Part of the book series: Advanced Information and Knowledge Processing ((AI&KP))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ababei, C., Maidee, P., and Bazargan, K. (2004). Exploring potential benefits of 3D FPGA integration. Field-Programmable Logic and its Applications, pages 874–880. LNCS/Springer Heidelberg, Germany.

    Chapter  Google Scholar 

  • Abdi, H. (1994). A neural network primer. Journal of Biological Systems, 2(3):247–283.

    Article  Google Scholar 

  • Alam, S., Troxel, D., and Thompson, C. (2002). A comprehensive layout methodology and layout-specific circuit analyses for three-dimensional integrated circuits. ISQED International Symposium on Quality Electronic Design, 2002, page 246. IEEE Computer Society Washington, DC.

    Google Scholar 

  • Alexander, M., Cohoon, J., Colflesh, J., Karro, J., and Robins, G. (1995). Three-dimensional field-programmable gate arrays. ASIC Conference and Exhibit, 1995, Proceedings of the Eighth Annual IEEE International, pages 253–256.

    Google Scholar 

  • Arms, K. and Camp, P. (1987). Biology. Saunders, Philadelphia, 3rd edition.

    Google Scholar 

  • Aspray, W., and Burks, A. (1987). Papers of John von Neumann on Computing and Computer Theory, volume 12 of Charles Babbage Institute Reprint Series for the History of Computing.

    Google Scholar 

  • Borriello, G., Ebeling, C., Hauck, S., and Burns, S. (1995). The Triptych FPGA architecture. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 3(4):491–501. IEEE Educational Activity Department Piscataway, NJ.

    Article  Google Scholar 

  • Boubekeur, A., Patry, J., Saucier, G., and Trilhe, J. (1992). Configuring a wafer-scale two-dimensional array of single-bit processors. Computer, 25(4):29–39. IEEE Computer Society Press, Los Alamitos, CA, USA.

    Article  Google Scholar 

  • Burns, S., Kuhn, C., Jacobs, K., MacKenzie, J., Ramsdale, C., Arias, A., Watts, J., Etchells, M., Chalmers, K., Devine, P., et al. (2004). Printing of polymer thin-film transistors for active-matrix- display applications. Journal of the Society for Information Display, 11:599.

    Article  Google Scholar 

  • Cakmakci, O., and Koyuncu, M. (2000). Integrated electronic systems in flexible and washable fibers. None. filed with the United States Patent Office and the European Patent Office.

    Google Scholar 

  • Cakmakci, O., Koyuncu, M., and Eber-Koyuncu, M. (2001). Fiber computing. Proceedings of the Workshop on Distributed and Disappearing User Interfaces in Ubiquitous Computing, CHI.

    Google Scholar 

  • Cell Matrix Corporation (2006a). Bibliography for Cell Matrix-related research. http://www.cellmatrix.com/entryway/products/pub/bibliography.html.

    Google Scholar 

  • Cell Matrix Corporation (2006b). Cell Matrix Software. http://www.cellmatrix.com/entryway/ products/software/software.html.

    Google Scholar 

  • Cell Matrix Corporation (2006c). MOD 88 Online Viewer. http://cellmatrix.dyndns.org:12001/ cgi-bin/mod88/obs2.cgi?

    Google Scholar 

  • Darwin, C. (1859). The Origin of Species by Means of Natural Selection. Or the Preservation of Favoured Races in the Struggle for Life. Murray, London.

    Google Scholar 

  • J. DePreitere, et al. (1994). An optoelectronic 3D field programmable gate array. In Hartenstein, W. and Servit, M., editors, Field-Programmable Logic: Architectures, Synthesis, and Applications, Lecture Notes in Computer Science, volume 849. Springer-Verlag, Berlin.

    Google Scholar 

  • Deutsch, L. and Schiffman, A. (1984). Efficient implementation of the Smalltalk-80 system. Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium on Principles of Programming languages, pages 297–302. ACM Saltlake City, UT.

    Google Scholar 

  • Duncan, R. (1989). Design goals and implementation of the new High Performance File System. Microsoft Systems Journal, 4(5):1–14.

    Google Scholar 

  • Durbeck, L., and Macias, N. (2001a). Autonomously Self-Repairing Circuits. NASA SBIR Phase II Proposal.

    Google Scholar 

  • Durbeck, L., and Macias, N. (2001b). Autonomously Self-Repairing Circuits. NASA SBIR Phase I Final Report.

    Google Scholar 

  • Durbeck, L., and Macias, N. (2001c). Self-configurable parallel processing system made from self-dual code/data processing cells utilizing a non-shifting memory. US Patent 6,222,381.

    Google Scholar 

  • Durbeck, L., and Macias, N. (2001d). The Cell Matrix: An architecture for nanocomputing. Nanotechnology, 12(3):217–230.

    Article  Google Scholar 

  • Durbeck, L., and Macias, N. (2002). Defect-tolerant, fine-grained parallel testing of a Cell Matrix. Proceedings of SPIE ITCom, 4867. SPIE Boston, MA.

    Google Scholar 

  • Dwyer, C., Johri, V., Patwardhan, J., Lebeck, A., and Sorin, D. (2004a). Design tools for self-assembling nanoscale technology. Nanotechnology, 15(9):1240–1245..

    Article  Google Scholar 

  • Dwyer, C., Poulton, J., Taylor, R., and Vicci, L. (2004b). DNA self-assembled parallel computer architectures. Nanotechnology, 15(11):1688–1694..

    Article  Google Scholar 

  • Edmison, J., Jones, M., Nakad, Z., and Martin, T. (2002). Using piezoelectric materials for wearable electronic textiles. Proceedings of the Sixth International Symposium on Wearable Computers, 2002.(ISWC 2002). pages 41–48. LNCS/Springer Berlin, Germany.

    Google Scholar 

  • Fischer, T. (1987). Heavy-ion-induced, gate-rupture in power MOSFETs. IEEE Transactions on Nuclear Science, 34(6):1786–1791.

    Article  Google Scholar 

  • Fraunhofer Institute for Reliability and Microintegration, Munich, 2006 Fra06 Fraunhofer Institute for Reliability and Microintegration, Munich (2006). Department of Si Technology and Vertical System Integration. http://www.izm-m.fraunhofer.de/files/fraunhofer2/si-technology__vsi.pdf, accessed 10/31/2006.

    Google Scholar 

  • Fuchs, W., and Swartzlander Jr, E. (1992). Wafer-scale integration: Architectures and algorithms. Computer, 25(4):6–8.

    Google Scholar 

  • Haldane, J. (1931). The Philosophical Basis of Life.

    Google Scholar 

  • Heisenberg, W. (1927). Werner Heisenberg, in a letter to Wolfgang Pauli, (February 1927).

    Google Scholar 

  • IEEE (1989–1995). Proceedings of the International Conference on Wafer Scale Integration.

    Google Scholar 

  • Kamins, T., and Williams, R. (2001). Trends in nanotechnology: Self-assembly and defect tolerance. Proceedings of the NSF Partnership in Nanotechnology Conference.

    Google Scholar 

  • Kauffman, S. (1993). The Origins of Order: Self-organization and Selection in Evolution. Oxford University Press.

    Google Scholar 

  • Kim, J., Hopfield, J., and Winfree, E. (2004). Neural network computation by in vitro transcriptional circuits. Advances in Neural Information Processing Systems, 17:681–688.

    Google Scholar 

  • Koza, J. (1992). Genetic Programming: On the programming of computers by means of natural selection. Bradford.

    Google Scholar 

  • Leeser, M., Meleis, W., Vai, M., and Zavracky, P. (1997). Rothko: A three dimensional FPGA architecture, its fabrication, and design tools. Seventh International Workshop on Field Programmable Logic and Applications. Springer London, UK.

    Google Scholar 

  • Lennox, J. (2001). Aristotle’s Philosophy of Biology: Studies in the Origins of Life Science. Cambridge University Press.

    Google Scholar 

  • MacDonald, W. A. (2006). Advanced Flexible Polymeric Substrates. In Klauk, H., editor, Organic Electronics: Materials, Manufacturing & Its Applications. Wiley.

    Google Scholar 

  • Macias, N. (1999). The PIG Paradigm: The design and use of a massively parallel fine grained self-reconfigurable infinitely scalable architecture. Proceedings of the First NASA/DOD Workshop on Evolvable Hardware (EH’99). IEEE Pasadema, CM.

    Google Scholar 

  • Macias, N. (2001). Circuits and sequences for enabling remote access to and control of non-adjacent cells in a locally self-reconfigurable processing system composed of self-dual processing cells. US Patent 6,297,667.

    Google Scholar 

  • Macias, N. (2006). Cell Matrix place and route tool: Changes and improvements. White Paper delivered to Los Alamos National Laboratory under subcontract #90843-001-04 4x.

    Google Scholar 

  • Macias, N., and Durbeck, L. (2002). Self-assembling circuits with autonomous fault handling. Proceedings of the NASA/DoD Conference on, Evolvable Hardware, 2002. pages 46–55. IEEE Washington, DC.

    Google Scholar 

  • Macias, N., and Durbeck, L. (2004). Adaptive methods for growing electronic circuits on an imperfect synthetic matrix. Biosystems, 73(3):172–204..

    Article  Google Scholar 

  • Macias, N., and Durbeck, L. (2005a). Unpublished white papers and talks delivered to Los Alamos National Laboratory under subcontract #90843-001-04 4x.

    Google Scholar 

  • Macias, N., and Durbeck, L. (2005b). A hardware implementation of the Cell Matrix self-configurable architecture: The Cell Matrix MOD 88. Proceedings of the NASA/DoD Conference on, Evolvable Hardware, 2005. pages 103–106. IEEE Washington, DC.

    Google Scholar 

  • Macias, N., Henry III, L., and Raju, M. (1999). Self-reconfigurable parallel processor made from regularly-connected self-dual code/data processing cells. US Patent 5,886,537.

    Google Scholar 

  • Macias, N., and Raju, M. D. (2001). Method and apparatus for automatic high-speed bypass routing in a Cell Matrix self-configurable hardware system. US Patent 6,577,159.

    Google Scholar 

  • Mange, D., Sipper, M., Stauffer, A., and Tempesti, G. (2000). Toward self-repairing and self-replicating hardware: the Embryonicsapproach. Proceedings of the Second NASA/DoD Workshop on, Evolvable Hardware, 2000. pages 205–214. IEEE Paloatlo, CA.

    Google Scholar 

  • Marculescu, D., Marculescu, R., Zamora, N., Stanley-Marbell, P., Khosla, P., Park, S., Jayaraman, S., Jung, S., Lauterbach, C., and Weber, W. (2003). Electronic textiles: A platform for pervasive computing. Proceedings of the IEEE, 91(12):1995–2018..

    Article  Google Scholar 

  • Martin, T. (2006). Tom Martin’s Wearable Electronic Textiles research group at Virginia Tech. http://www.ccm.ece.vt.edu/etextiles/, http://www.ccm.ece.vt.edu/etextiles/publications/ accessed 10/31/2006.

    Google Scholar 

  • Martin, T., Jones, M., Edmison, J., and Shenoy, R. (2003). Towards a design framework for wearable electronic textiles. Proceedings of the Seventh IEEE International Symposium on Wearable Computers, 2003. pages 190–199.

    Google Scholar 

  • Meleis, W., Leeser, M., Zavracky, P., and Vai, M. (1997). Architectural design of a three dimensional FPGA. Proceedings of the Seventeenth Conference on Advanced Research in VLSI, 1997, pages 256–268. IEEE Computer Society HN Arbor, MI.

    Chapter  Google Scholar 

  • Misc (2006). International Journal of Chip-Scale Electronics, Flip-Chip Technology, Optoelectronic Interconnection and Wafer-Level Packaging. http://www.chipscalereview.com accessed 10/31/2006.

    Google Scholar 

  • Montemerlo, M., Love, J., Opiteck, G., Goldhaber-Gordon, D., and Ellenbogen, J. (1996). Technologies and designs for electronic nanocomputers. The MITRE Corporation, McLean, VA, MITRE Tech. Rep. MTR 96W0000044, July.

    Google Scholar 

  • Ortega-Sanchez, C., Mange, D., Smith, S., and Tyrrell, A. (2000). Embryonics: A bio-inspired cellular architecture with fault- tolerant properties. Genetic Programming and Evolvable Machines, 1(3):187–215.

    Article  Google Scholar 

  • Page, I. (1996). Constructing hardware-software systems from a single description. Journal of VLSI Signal Processing, 12(1):87–107.

    Article  Google Scholar 

  • Park, S., Pistol, C., Ahn, S., Reif, J., Lebeck, A., Dwyer, C., and LaBean, T. (2006). Finite-size, fully-addressable DNA tile lattices formed by hierarchical assembly procedures. Angewandte Chemie, 45:735–739.

    Article  Google Scholar 

  • Patwardhan, J., Dwyer, C., Lebeck, A., and Sorin, D. (2004). Circuit and system architecture for DNA-guided self-assembly of nanoelectronics. Foundations of Nanoscience: Self-Assembled Architectures and Devices. Proceedings 2004, pages 344–358. Science Technica Snowbird, UT.

    Google Scholar 

  • Patwardhan, J., Dwyer, C., Lebeck, A., and Sorin, D. (2006). NANA: A nano-scale active network architecture. ACM Journal on Emerging Technologies in Computing Systems (JETC), 2(1):1–30..

    Article  Google Scholar 

  • Pistol, C., Lebeck, A., and Dwyer, C. (2006). Design automation for DNA self-assembled nanostructures. Proceedings of the 43rd Annual Conference on Design Automation, pages 919–924. ACM Press New York, NY.

    Google Scholar 

  • Plastic Logic (2006). Plastic Logic, developer of printed flexible thin film transistor (TFT) arrays. http://www.plasticlogic.com/technology.php accessed 10/31/2006.

    Google Scholar 

  • Prodan, L., Tempesti, G., Mange, D., and Stauffer, A. (2003). Embryonics: Electronic stem cells. In Abbass, H., Standish, R., and Bedau, M., editors, Artificial Life VIII: Proceedings of the Eighth International Conference on Artificial Life, pages 101–105. Bradford. The MIT Press Sydney, Australia.

    Google Scholar 

  • Robinson, B., and Seeman, N. (1987). The design of a biochip: a self-assembling molecular-scale memory device. Protein Engineering Design and Selection, 1:295–300.

    Article  Google Scholar 

  • Rothemund, P., Papadakis, N., and Winfree, E. (2004). Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biology, 2(12):2041–2053..

    Article  Google Scholar 

  • Sabalan Group (2006). Textile History. http://www.sabalangroup.com/aboutus-history-textilehist-en.html.

    Google Scholar 

  • Saha, C., Bellis, S., Mathewson, A., and Popovici, E. (2004). Performance enhancement defect tolerance in the Cell Matrix architecture. Proceedings of MIEL 2: 777–780.

    Google Scholar 

  • Saucier, G., Patry, J., and Kouka, E. (1988). Defect tolerance in a wafer scale array for image processing. Proceedings of an International Workshop on Defect and Fault Tolerance in VLSI Systems, University of Massachusetts, Amherst, Oct., 8:8.2–1–8.2–13.

    Google Scholar 

  • Saucier, G., and Trilhe, J. (1986). Wafer scale integration. North-Holland.

    Google Scholar 

  • Schmit, H. (1997). Incremental reconfiguration for pipelined applications. IEEE Symposium on FPGAs for Custom Computing Machines, pages 47–55. IEEE Napa, CA.

    Google Scholar 

  • Seeman, N. (1982). Nucleic acid junctions and lattices. Journal of Theoretical Biology, 99(2):237–47..

    Article  Google Scholar 

  • Seeman, N. (2003). Biochemistry and structural DNA nanotechnology: An evolving symbiotic relationship. Biochemistry, 42(24):7259–7269..

    Article  Google Scholar 

  • Sirringhaus, H., Sele, C. W., von Werne, T., and Ramsdale, C. (2006). Manufacturing of Organic Transistor Circuits by Solution-based Printing. Wiley Interscience.

    Google Scholar 

  • Stan, M., Franzon, P., Goldstein, S., Lach, J., and Ziegler, M. (2003). Molecular electronics: from devices and interconnect to circuits and architecture. Proceedings of the IEEE, 91(11):1940–1957.

    Article  Google Scholar 

  • Thompson, A. (1996). An evolved circuit, intrinsic in silicon, entwined with physics. Proceedings of the First International Conference on Evolvable Systems: From Biology to Hardware, pages 390–405. Springer Verlag Berlin, Germany.

    Google Scholar 

  • Trimberger, S. (1998). Scheduling designs into a time-multiplexed FPGA. Proceedings of the 1998 ACM/SIGDA Sixth International Symposium on Field Programmable Gate Arrays, pages 153–160. ACM Press New York, NY.

    Chapter  Google Scholar 

  • Vinge, V. (1993). Technological singularity. VISION-21 Symposium sponsored by NASA Lewis Research Center and the Ohio Aerospace Institute, March.

    Google Scholar 

  • Waskiewicz, A., Groninger, J., Strahan, V., and Long, D. (1986). Burnout of power MOS transistors with heavy ions of Californium-252. IEEE, DNA, Sandia National Laboratories, and NASA, 1986 Annual Conference on Nuclear and Space Radiation Effects, 23rd, Providence, RI, July 21-23, 1986). IEEE Transactions on Nuclear Science (ISSN 0018-9499),, 33(pt 1):1710–1713.

    Google Scholar 

  • Winfree, E. (1998). Simulations of computing by self-assembly. Caltech CS Technical Report 1998.22.

    Google Scholar 

  • Winfree, E. (2003). DNA Computing by self-assembly. The Bridge, 33(4):31–38..

    Google Scholar 

  • Winfree, E., and Bekbolatov, R. (2004). Proofreading tile sets: Error-correction for algorithmic self-assembly. DNA Computing, 9:126–144.

    Article  MathSciNet  Google Scholar 

  • Winfree, E., Liu, F., Wenzler, L., and Seeman, N. (1998). Design and self-assembly of two-dimensional DNA crystals. Nature, 394(6693):539–544..

    Article  Google Scholar 

  • Wong, W. S., Daniel, J. H., Chabinyc, M. L., Arias, A. C., Ready, S. E., and Lujan, R. (2006). Thin-film transistor fabrication by digital lithography. In H. Klauk, editor, Organic Materials, Manufacturing, and Applications, Wiley VCH.

    Google Scholar 

  • Wyatt, P. and Raffel, J. (1989). Restructurable VLSI-a demonstrated wafer-scale technology. Proceedings of the First International Conference on Wafer Scale Integration, 1989. pages 13–20. IEEE Computer Society Press Washington, DC.

    Google Scholar 

  • Xilinx, Inc. (2006). Xilinx, Inc. http://www.xilinx.com accessed 10/31/2006.

    Google Scholar 

  • Zeng, A., Lu, J., Rose, K., and Gutmann, R. (2005). First-order performance prediction of cache memory with wafer-level 3D integration. IEEE Design & Test of Computers, 22(6):548–555.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Macias, N.J., Durbeck, L.J.K. (2008). Self-Organizing Digital Systems. In: Prokopenko, M. (eds) Advances in Applied Self-organizing Systems. Advanced Information and Knowledge Processing. Springer, London. https://doi.org/10.1007/978-1-84628-982-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-982-8_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-981-1

  • Online ISBN: 978-1-84628-982-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics