Skip to main content

Folate Nutrition in Skin Health and Skin Cancer Prevention

  • Chapter
  • First Online:

Part of the book series: Nutrition and Health ((NH))

Abstract

This chapter will discuss the role of folate nutrition in the unique environment of human skin. The folates are a family of structurally similar, water-soluble, B vitamins, which have been well documented as vital in promoting human health and preventing disease. Optimized folate nutrient levels support many biochemical processes important for the maintenance and function of healthy skin. This importance is underscored by potential links between folate deficiency and psoriasis, vitiligo, exfoliative dermatitis, glossitis, and skin cancers. Human skin is particularly prone to the development of carcinomas. It is established that skin cancer risk correlates with exposure to the complete carcinogen, ultraviolet radiation (UVR) from sunlight. Total avoidance of solar exposure is impractical.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

5,10-Methylene-H4folate:

5,10-Methylenetetrahydrofolate

5-Formyl-H4folate:

5-Formyltetrahydrofolate

5-FU:

5-Fluorouracil

5-Methyl-H2folate:

5-Methyldihydrofolate

5-Methyl-H4folate:

5-Methyltetrahydrofolate

AICAR:

Aminoimidazol-4-carboxamide ribonucleotide

DHFR:

Dihydrofolate reductase

dTMP:

Deoxythymidylate monophosphate

dUMP:

Deoxyuridylate monophosphate

FAICAR:

N-Formylaminoimidazol-4-carboxamide ribonucleotide

FDA:

Food and Drug Administration

FGAR:

N-Formylglycinamide ribonucleotide

FOLR1:

Folate receptor

FPGS:

Floyl-polyl-gamma(γ)-glutamate

FRα:

Folate receptor alpha

GAR:

Glycinamide ribonucleotide

GGH:

Gamma(γ)-glutamyl hydrolase

H2folate:

Dihydrofolate

H4folate:

Tetrahydrofolate

HCP:

Heme carrier protein

Hcy:

Homocysteine

hPCFT:

Human proton coupled folate transporters

MS:

Methionine synthase

MTHFR:

Methylenetetrahydrofolate reductase

MTX:

Methotrexate

NADPH:

Nicotinamide adenine dinucleotide phosphate

O2 :

Atmospheric oxygen

O3 :

Ozone

RCS:

Reactive carbonyl species

RDA:

Recommended dietary allowances

RFC:

Reduced folate carrier

ROS:

Reactive oxygen species

SAM:

S-Adenosylmethionine

SHMT:

Hydroxymethyltransferase

SPF:

Sun protection factor

TS:

Thymidylate synthase

UV:

Ultraviolet

UV-A:

Ultraviolet light wavelength A (315–400 nm)

UV-B:

Ultraviolet light wavelength B (280–315 nm)

UV-C:

Ultraviolet light wavelength C (100–280 nm)

UVR:

Ultraviolet radiation

References

  1. Willis L. Treatment of pernicious anaemia of pregnancy and tropical anaemia with special reference to yeast extract as curative agent. Br Med J. 1931;1:1059–64.

    Article  Google Scholar 

  2. Angier RB, et al. The structure and synthesis of the liver L. casei factor. Science. 1946;103(2683):667–9.

    Article  CAS  Google Scholar 

  3. Mitchell HK, Snell EE, Williams RJ. The concentration of “folic acid”. J Am Chem Soc. 1941;63:2284.

    Article  CAS  Google Scholar 

  4. Institute of Medicine. Dietary reference intakes: thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. Food and Nutrition Board NAoS, editor. Washington, DC: National Academy Press; 1998.

    Google Scholar 

  5. Raiten DJ, Fisher KD. Assessment of folate methodology used in the Third National Health and Nutrition Examination Survey (NHANES III, 1988–1994). J Nutr. 1995;125(5):1371S–98.

    PubMed  CAS  Google Scholar 

  6. Bialostosky K, Wright JD, Kennedy-Stephenson J, McDowell M, Johnson CL. Dietary intake of macronutrients, micronutrients and other dietary constituents: United States 1988–94. National Center for Health Statistics. Vital Health Stat. 2002;11(245):1–158.

    Google Scholar 

  7. Dietrich M, Brown CJ, Block G. The effect of folate fortification of cereal-grain products on blood folate status, dietary folate intake, and dietary folate sources among adult non-supplement users in the United States. J Am Coll Nutr. 2005;24(4):266–74.

    PubMed  CAS  Google Scholar 

  8. Lewis CJ, et al. Estimated folate intakes: data updated to reflect food fortification, increased bioavailability, and dietary supplement use. Am J Clin Nutr. 1999;70(2):198–207.

    PubMed  CAS  Google Scholar 

  9. Bailey LB, et al. Folacin and iron status and hematological findings in black and Spanish-American adolescents from urban low-income households. Am J Clin Nutr. 1982;35(5):1023–32.

    PubMed  CAS  Google Scholar 

  10. Assantachai P, Lekhakula S. Epidemiological survey of vitamin deficiencies in older Thai adults: implications for national policy planning. Public Health Nutr. 2007;10(1):65–70.

    Article  PubMed  Google Scholar 

  11. Chandler CJ, Wang TT, Halsted CH. Pteroylpolyglutamate hydrolase from human jejunal brush borders. Purification and characterization. J Biol Chem. 1986;261(2):928–33.

    PubMed  CAS  Google Scholar 

  12. Wang TT, Chandler CJ, Halsted CH. Intracellular pteroylpolyglutamate hydrolase from human jejunal mucosa. Isolation and characterization. J Biol Chem. 1986;261(29):13551–5.

    PubMed  CAS  Google Scholar 

  13. Chandler CJ, et al. Functional specificity of jejunal brush-border pteroylpolyglutamate hydrolase in pig. Am J Physiol. 1991;260(6 Pt 1):G865–72.

    PubMed  CAS  Google Scholar 

  14. Said HM, et al. Adaptive regulation of intestinal folate uptake: effect of dietary folate deficiency. Am J Physiol Cell Physiol. 2000;279(6):C1889–95.

    PubMed  CAS  Google Scholar 

  15. Collins TD, et al. Effects of ethanol on tissue folate incorporation and recovery from folate deficiency in rats. Alcohol Clin Exp Res. 1992;16(4):757–63.

    Article  PubMed  CAS  Google Scholar 

  16. Nakai Y, et al. Functional characterization of human proton-coupled folate transporter/heme carrier protein 1 heterologously expressed in mammalian cells as a folate transporter. J Pharmacol Exp Ther. 2007;322(2):469–76.

    Article  PubMed  CAS  Google Scholar 

  17. Balamurugan K, Said HM. Role of reduced folate carrier in intestinal folate uptake. Am J Physiol Cell Physiol. 2006;291(1):C189–93.

    Article  PubMed  CAS  Google Scholar 

  18. Said HM, Redha R. A carrier-mediated transport for folate in basolateral membrane vesicles of rat small intestine. Biochem J. 1987;247(1):141–6.

    PubMed  CAS  Google Scholar 

  19. Kalmbach RD, et al. Circulating folic acid in plasma: relation to folic acid fortification. Am J Clin Nutr. 2008;88(3):763–8.

    PubMed  CAS  Google Scholar 

  20. Lucock MD, Hartley R, Smithells RW. A rapid and specific HPLC-electrochemical method for the determination of endogenous 5-methyltetrahydrofolic acid in plasma using solid phase sample preparation with internal standardization. Biomed Chromatogr. 1989;3(2):58–63.

    Article  PubMed  CAS  Google Scholar 

  21. Brzezinska A, Winska P, Balinska M. Cellular aspects of folate and antifolate membrane transport. Acta Biochim Pol. 2000;47(3):735–49.

    PubMed  CAS  Google Scholar 

  22. Weitman SD, et al. Cellular localization of the folate receptor: potential role in drug toxicity and folate homeostasis. Cancer Res. 1992;52(23):6708–11.

    PubMed  CAS  Google Scholar 

  23. Henderson GB. Folate-binding proteins. Annu Rev Nutr. 1990;10:319–35.

    Article  PubMed  CAS  Google Scholar 

  24. Bosson G. Reduced folate carrier: biochemistry and molecular biology of the normal and methotrexate-resistant cell. Br J Biomed Sci. 2003;60(2):117–29.

    PubMed  CAS  Google Scholar 

  25. Shane B. Folylpolyglutamate synthesis and role in the regulation of one-carbon metabolism. Vitam Horm. 1989;45:263–335.

    Article  PubMed  CAS  Google Scholar 

  26. Lucock M. Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab. 2000;71(1–2):121–38.

    Article  PubMed  CAS  Google Scholar 

  27. Zeng H, et al. Transport of methotrexate (MTX) and folates by multidrug resistance protein (MRP) 3 and MRP1: effect of polyglutamylation on MTX transport. Cancer Res. 2001;61(19):7225–32.

    PubMed  CAS  Google Scholar 

  28. Matherly LH, Goldman DI. Membrane transport of folates. Vitam Horm. 2003;66:403–56.

    Article  PubMed  CAS  Google Scholar 

  29. Ifergan I, Jansen G, Assaraf YG. The reduced folate carrier (RFC) is cytotoxic to cells under conditions of severe folate deprivation. RFC as a double edged sword in folate homeostasis. J Biol Chem. 2008;283(30):20687–95.

    Article  PubMed  CAS  Google Scholar 

  30. Kompis IM, Islam K, Then RL. DNA and RNA synthesis: antifolates. Chem Rev. 2005;105(2):593–620.

    Article  PubMed  CAS  Google Scholar 

  31. Green JM, Ballou DP, Matthews RG. Examination of the role of methylenetetrahydrofolate reductase in incorporation of methyltetrahydrofolate into cellular metabolism. FASEB J. 1988;2(1):42–7.

    PubMed  CAS  Google Scholar 

  32. Stokstad EL, Koch J. Folic acid metabolism. Physiol Rev. 1967;47(1):83–116.

    PubMed  CAS  Google Scholar 

  33. Matthews RG, Baugh CM. Interactions of pig liver methylenetetrahydrofolate reductase with methylenetetrahydropteroylpolyglutamate substrates and with dihydropteroylpolyglutamate inhibitors. Biochemistry. 1980;19(10):2040–5.

    Article  PubMed  CAS  Google Scholar 

  34. Wagner C, Briggs WT, Cook RJ. Inhibition of glycine N-methyltransferase activity by folate derivatives: implications for regulation of methyl group metabolism. Biochem Biophys Res Commun. 1985;127(3):746–52.

    Article  PubMed  CAS  Google Scholar 

  35. Milunsky A, et al. Multivitamin/folic acid supplementation in early pregnancy reduces the prevalence of neural tube defects. JAMA. 1989;262(20):2847–52.

    Article  PubMed  CAS  Google Scholar 

  36. Honein MA, et al. Impact of folic acid fortification of the US food supply on the occurrence of neural tube defects. JAMA. 2001;285(23):2981–6.

    Article  PubMed  CAS  Google Scholar 

  37. De Wals P, et al. Reduction in neural-tube defects after folic acid fortification in Canada. N Engl J Med. 2007;357(2):135–42.

    Article  PubMed  Google Scholar 

  38. Goh YI, Koren G. Folic acid in pregnancy and fetal outcomes. J Obstet Gynaecol. 2008;28(1):3–13.

    Article  PubMed  CAS  Google Scholar 

  39. Mudd SH, et al. Homocystinuria: an enzymatic defect. Science. 1964;143:1443–5.

    Article  PubMed  CAS  Google Scholar 

  40. Welch GN, Loscalzo J. Homocysteine and atherothrombosis. N Engl J Med. 1998;338(15):1042–50.

    Article  PubMed  CAS  Google Scholar 

  41. Lonn E, et al. Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med. 2006;354(15):1567–77.

    Article  PubMed  CAS  Google Scholar 

  42. Clarke R, et al. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch Neurol. 1998;55(11):1449–55.

    Article  PubMed  CAS  Google Scholar 

  43. Godfrey PS, et al. Enhancement of recovery from psychiatric illness by methylfolate. Lancet. 1990;336(8712):392–5.

    Article  PubMed  CAS  Google Scholar 

  44. Slattery ML, et al. Methylenetetrahydrofolate reductase, diet, and risk of colon cancer. Cancer Epidemiol Biomarkers Prev. 1999;8(6):513–8.

    PubMed  CAS  Google Scholar 

  45. Zhang S, et al. A prospective study of folate intake and the risk of breast cancer. JAMA. 1999;281(17):1632–7.

    Article  PubMed  CAS  Google Scholar 

  46. Stolzenberg-Solomon RZ, et al. Dietary and other methyl-group availability factors and pancreatic cancer risk in a cohort of male smokers. Am J Epidemiol. 2001;153(7):680–7.

    Article  PubMed  CAS  Google Scholar 

  47. Fang JY, et al. Relationship of plasma folic acid and status of DNA methylation in human gastric cancer. J Gastroenterol. 1997;32(2):171–5.

    Article  PubMed  CAS  Google Scholar 

  48. Butterworth Jr CE. Folate status, women’s health, pregnancy outcome, and cancer. J Am Coll Nutr. 1993;12(4):438–41.

    PubMed  Google Scholar 

  49. Kamei T, et al. Experimental study of the therapeutic effects of folate, vitamin A, and vitamin B12 on squamous metaplasia of the bronchial epithelium. Cancer. 1993;71(8):2477–83.

    Article  PubMed  CAS  Google Scholar 

  50. Skibola CF, et al. Polymorphisms in the methylenetetrahydrofolate reductase gene are associated with susceptibility to acute leukemia in adults. Proc Natl Acad Sci U S A. 1999;96(22):12810–5.

    Article  PubMed  CAS  Google Scholar 

  51. Han J, Colditz GA, Hunter DJ. Polymorphisms in the MTHFR and VDR genes and skin cancer risk. Carcinogenesis. 2007;28(2):390–7.

    Article  PubMed  CAS  Google Scholar 

  52. Goldsmith LA. Physiology, biochemistry, and molecular biology of the skin, vol. 1. 2nd ed. New York: Oxford University Press; 1991.

    Google Scholar 

  53. Jonak C, Klosner G, Trautinger F. Significance of heat shock proteins in the skin upon UV exposure. Front Biosci. 2009;14:4758–68.

    Article  PubMed  CAS  Google Scholar 

  54. Antoniou C, et al. Photoaging: prevention and topical treatments. Am J Clin Dermatol. 2010;11(2):95–102.

    Article  PubMed  Google Scholar 

  55. Williams JD, Jacobson MK. Photobiological implications of folate depletion and repletion in cultured human keratinocytes. J Photochem Photobiol B. 2010;99(1):49–61.

    Article  PubMed  CAS  Google Scholar 

  56. Bjorkegren K, Svardsudd K. Reported symptoms and clinical findings in relation to serum cobalamin, folate, methylmalonic acid and total homocysteine among elderly Swedes: a population-based study. J Intern Med. 2003;254(4):343–52.

    Article  PubMed  CAS  Google Scholar 

  57. Meiss F, Marsch WC, Fischer M. Livedoid vasculopathy. The role of hyperhomocysteinemia and its simple therapeutic consequences. Eur J Dermatol. 2006;16(2):159–62.

    PubMed  Google Scholar 

  58. Gisondi P, et al. Folic acid in general medicine and dermatology. J Dermatolog Treat. 2007;18(3):138–46.

    Article  PubMed  CAS  Google Scholar 

  59. Montes LF, et al. Folic acid and vitamin B12 in vitiligo: a nutritional approach. Cutis. 1992;50(1):39–42.

    PubMed  CAS  Google Scholar 

  60. Fry L, et al. The mechanism of folate deficiency in psoriasis. Br J Dermatol. 1971;84(6):539–44.

    Article  PubMed  CAS  Google Scholar 

  61. Hild DH. Folate losses from the skin in exfoliative dermatitis. Arch Intern Med. 1969;123(1):51–7.

    Article  PubMed  CAS  Google Scholar 

  62. Vanizor Kural B, et al. Plasma homocysteine and its relationships with atherothrombotic markers in psoriatic patients. Clin Chim Acta. 2003;332(1–2):23–30.

    Article  PubMed  CAS  Google Scholar 

  63. Malerba M, et al. Plasma homocysteine and folate levels in patients with chronic plaque psoriasis. Br J Dermatol. 2006;155(6):1165–9.

    Article  PubMed  CAS  Google Scholar 

  64. AAD. Psoriasis triggers. Psoriasis Net; 2008.http://www.skincarephysicians.com/psoriasisnet/triggers.html.

  65. Solini A, Santini E, Ferrannini E. Effect of short-term folic acid supplementation on insulin sensitivity and inflammatory markers in overweight subjects. Int J Obes (Lond). 2006;30(8):1197–202.

    Article  CAS  Google Scholar 

  66. Katona P, Katona-Apte J. The interaction between nutrition and infection. Clin Infect Dis. 2008;46(10):1582–8.

    Article  PubMed  Google Scholar 

  67. Leuchtenberger R, et al. The Influence of “folic acid” on spontaneous breast cancers in mice. Science. 1945;101(2611):46.

    Article  PubMed  CAS  Google Scholar 

  68. Farber S, et al. The action of pteroylglutamic conjugates on man. Science. 1947;106(2764):619–21.

    Article  PubMed  CAS  Google Scholar 

  69. Farber S, Diamond LK. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N Engl J Med. 1948;238(23):787–93.

    Article  PubMed  CAS  Google Scholar 

  70. Ulrey CL, et al. The impact of metabolism on DNA methylation. Hum Mol Genet. 2005;14(Spec No 1):R139–47.

    Article  PubMed  CAS  Google Scholar 

  71. Duthie SJ, et al. Folate deficiency in vitro induces uracil misincorporation and DNA hypomethylation and inhibits DNA excision repair in immortalized normal human colon epithelial cells. Nutr Cancer. 2000;37(2):245–51.

    Article  PubMed  CAS  Google Scholar 

  72. Duthie SJ, et al. Impact of folate deficiency on DNA stability. J Nutr. 2002;132(8 Suppl):2444S–9.

    PubMed  CAS  Google Scholar 

  73. Sanjoaquin MA, et al. Folate intake and colorectal cancer risk: a meta-analytical approach. Int J Cancer. 2005;113(5):825–8.

    Article  PubMed  CAS  Google Scholar 

  74. Kim YI. Folate and colorectal cancer: an evidence-based critical review. Mol Nutr Food Res. 2007;51(3):267–92.

    Article  PubMed  CAS  Google Scholar 

  75. Jaszewski R, et al. Folic acid supplementation inhibits recurrence of colorectal adenomas: a randomized chemoprevention trial. World J Gastroenterol. 2008;14(28):4492–8.

    Article  PubMed  CAS  Google Scholar 

  76. Logan RF, et al. Aspirin and folic acid for the prevention of recurrent colorectal adenomas. Gastroenterology. 2008;134(1):29–38.

    Article  PubMed  CAS  Google Scholar 

  77. Cole BF, et al. Folic acid for the prevention of colorectal adenomas: a randomized clinical trial. JAMA. 2007;297(21):2351–9.

    Article  PubMed  CAS  Google Scholar 

  78. Kim YI. Folic acid supplementation and cancer risk: point. Cancer Epidemiol Biomarkers Prev. 2008;17(9):2220–5.

    Article  PubMed  Google Scholar 

  79. Weinstock MA. The struggle for primary prevention of skin cancer. Am J Prev Med. 2008;34(2):171–2.

    Article  PubMed  Google Scholar 

  80. NCI. Skin cancer facts and figures 2008.www.nci.nih.gov/cancertopics/types/skin. 2008.

  81. Robien K, Ulrich CM. 5,10-Methylenetetrahydrofolate reductase polymorphisms and leukemia risk: a HuGE minireview. Am J Epidemiol. 2003;157(7):571–82.

    Article  PubMed  Google Scholar 

  82. Rozen R. Genetic predisposition to hyperhomocysteinemia: deficiency of methylenetetrahydrofolate reductase (MTHFR). Thromb Haemost. 1997;78(1):523–6.

    PubMed  CAS  Google Scholar 

  83. Mandola MV, et al. A 6 bp polymorphism in the thymidylate synthase gene causes message instability and is associated with decreased intratumoral TS mRNA levels. Pharmacogenetics. 2004;14(5):319–27.

    Article  PubMed  CAS  Google Scholar 

  84. Ulrich CM, et al. Searching expressed sequence tag databases: discovery and confirmation of a common polymorphism in the thymidylate synthase gene. Cancer Epidemiol Biomarkers Prev. 2000;9(12):1381–5.

    PubMed  CAS  Google Scholar 

  85. Kang SY, et al. Polymorphisms of 5,10-methylenetetrahydrofolate reductase and thymidylate synthase in squamous cell carcinoma and basal cell carcinoma of the skin. Mol Med Report. 2010;3(5):741–7.

    CAS  Google Scholar 

  86. Laing ME, et al. Association of methylenetetrahydrofolate reductase polymorphism and the risk of squamous cell carcinoma in renal transplant patients. Transplantation. 2007;84(1):113–6.

    Article  PubMed  CAS  Google Scholar 

  87. Peters GJ, Kohne CH. Fluoropyrimidines as antifolate drugs. In: Jackson AL, editor. Antifolate drugs in cancer therapy. Totowa, NJ: Humana Press; 1999.

    Google Scholar 

  88. Hagner N, Joerger M. Cancer chemotherapy: targeting folic acid synthesis. Cancer Manag Res. 2010;2:293–301.

    PubMed  CAS  Google Scholar 

  89. Matz H. Phototherapy for psoriasis: what to choose and how to use: facts and controversies. Clin Dermatol. 2010;28(1):73–80.

    Article  PubMed  Google Scholar 

  90. Branda RF, Eaton JW. Skin color and nutrient photolysis: an evolutionary hypothesis. Science. 1978;201(4356):625–6.

    Article  PubMed  CAS  Google Scholar 

  91. Jablonski NG, Chaplin G. Colloquium paper: human skin pigmentation as an adaptation to UV radiation. Proc Natl Acad Sci U S A. 2010;107 Suppl 2:8962–8.

    Article  PubMed  CAS  Google Scholar 

  92. Cohn BA. The vital role of the skin in human natural history. Int J Dermatol. 1998;37(11):821–4.

    Article  PubMed  CAS  Google Scholar 

  93. Chaplin G. Geographic distribution of environmental factors influencing human skin coloration. Am J Phys Anthropol. 2004;125(3):292–302.

    Article  PubMed  Google Scholar 

  94. Blum HF. Does the melanin pigment of human skin have adaptive value? An essay in human skin have adaptive value? An essay in human ecology and the evolution of race. Q Rev Biol. 1961;36:50–63.

    Article  PubMed  CAS  Google Scholar 

  95. Loomis WF. Skin-pigment regulation of vitamin-D biosynthesis in man. Science. 1967;157(788):501–6.

    Article  PubMed  CAS  Google Scholar 

  96. Holick MF. The cutaneous photosynthesis of previtamin D3: a unique photoendocrine system. J Invest Dermatol. 1981;77(1):51–8.

    Article  PubMed  CAS  Google Scholar 

  97. Holick MF, MacLaughlin JA, Doppelt SH. Regulation of cutaneous previtamin D3 photosynthesis in man: skin pigment is not an essential regulator. Science. 1981;211(4482):590–3.

    Article  PubMed  CAS  Google Scholar 

  98. Post PW, Daniels Jr F, Binford Jr RT. Cold injury and the evolution of “white” skin. Hum Biol. 1975;47(1):65–80.

    PubMed  CAS  Google Scholar 

  99. Yuen AW, Jablonski NG. Vitamin D: in the evolution of human skin colour. Med Hypotheses. 2010;74(1):39–44.

    Article  PubMed  CAS  Google Scholar 

  100. MacKie RM, Hauschild A, Eggermont AM. Epidemiology of invasive cutaneous melanoma. Ann Oncol. 2009;20 Suppl 6:61–7.

    Article  Google Scholar 

  101. Stratton SP, Dorr RT, Alberts DS. The state-of-the-art in chemoprevention of skin cancer. Eur J Cancer. 2000;36(10):1292–7.

    Article  PubMed  CAS  Google Scholar 

  102. Lober BA, Lober CW, Accola J. Actinic keratosis is squamous cell carcinoma. J Am Acad Dermatol. 2000;43(5 Pt 1):881–2.

    Article  PubMed  CAS  Google Scholar 

  103. Ames BN. DNA damage from micronutrient deficiencies is likely to be a major cause of cancer. Mutat Res. 2001;475(1–2):7–20.

    PubMed  CAS  Google Scholar 

  104. Ullrich SE. Photoimmune suppression and photocarcinogenesis. Front Biosci. 2002;7:d684–703.

    Article  PubMed  CAS  Google Scholar 

  105. Wondrak GT, et al. Identification of alpha-dicarbonyl scavengers for cellular protection against carbonyl stress. Biochem Pharmacol. 2002;63(3):361–73.

    Article  PubMed  CAS  Google Scholar 

  106. Wondrak GT, et al. Proteins of the extracellular matrix are sensitizers of photo-oxidative stress in human skin cells. J Invest Dermatol. 2003;121(3):578–86.

    Article  PubMed  CAS  Google Scholar 

  107. Wondrak GT, et al. Photosensitized growth inhibition of cultured human skin cells: mechanism and suppression of oxidative stress from solar irradiation of glycated proteins. J Invest Dermatol. 2002;119(2):489–98.

    Article  PubMed  CAS  Google Scholar 

  108. Wondrak GT, Jacobson MK, Jacobson EL. Endogenous UVA-photosensitizers: mediators of skin photodamage and novel targets for skin photoprotection. Photochem Photobiol Sci. 2006;5(2):215–37.

    Article  PubMed  CAS  Google Scholar 

  109. Jeffes III EW, Tang EH. Actinic keratosis. Current treatment options. Am J Clin Dermatol. 2000;1(3):167–79.

    Article  PubMed  Google Scholar 

  110. Guenthner ST, et al. Cutaneous squamous cell carcinomas consistently show histologic evidence of in situ changes: a clinicopathologic correlation. J Am Acad Dermatol. 1999;41(3 Pt 1):443–8.

    Article  PubMed  CAS  Google Scholar 

  111. Hurwitz RM, Monger LE. Solar keratosis: an evolving squamous cell carcinoma. Benign or malignant? Dermatol Surg. 1995;21(2):184.

    PubMed  CAS  Google Scholar 

  112. de Gruijl FR. UV-induced immunosuppression in the balance. Photochem Photobiol. 2008;84(1):2–9.

    PubMed  Google Scholar 

  113. Harris RB, Griffith K, Moon TE. Trends in the incidence of nonmelanoma skin cancers in southeastern Arizona, 1985–1996. J Am Acad Dermatol. 2001;45(4):528–36.

    Article  PubMed  CAS  Google Scholar 

  114. Marcil I, Stern RS. Risk of developing a subsequent nonmelanoma skin cancer in patients with a history of nonmelanoma skin cancer: a critical review of the literature and meta-analysis. Arch Dermatol. 2000;136(12):1524–30.

    Article  PubMed  CAS  Google Scholar 

  115. Chen J, et al. Nonmelanoma skin cancer and risk for subsequent malignancy. J Natl Cancer Inst. 2008;100(17):1215–22.

    Article  PubMed  Google Scholar 

  116. Marks R. An overview of skin cancers. Incidence and causation. Cancer. 1995;75(2 Suppl):607–12.

    Article  PubMed  CAS  Google Scholar 

  117. Holick MF. Vitamin D: a millenium perspective. J Cell Biochem. 2003;88(2):296–307.

    Article  PubMed  CAS  Google Scholar 

  118. Lucock M. Folic acid: beyond metabolism. J Evid Based Complementary Altern Med. 2011;16(2):102–13.

    Article  CAS  Google Scholar 

  119. Off MK, et al. Ultraviolet photodegradation of folic acid. J Photochem Photobiol B. 2005;80(1):47–55.

    Article  PubMed  CAS  Google Scholar 

  120. Steindal AH, et al. Photodegradation of 5-methyltetrahydrofolate: biophysical aspects. Photochem Photobiol. 2006;82(6):1651–5.

    PubMed  CAS  Google Scholar 

  121. Steindal AH, et al. 5-Methyltetrahydrofolate is photosensitive in the presence of riboflavin. Photochem Photobiol Sci. 2008;7(7):814–8.

    Article  PubMed  CAS  Google Scholar 

  122. Suh JR, Herbig AK, Stover PJ. New perspectives on folate catabolism. Annu Rev Nutr. 2001;21:255–82.

    Article  PubMed  CAS  Google Scholar 

  123. McNulty H, et al. Folate catabolism is related to growth rate in weanling rats. J Nutr. 1995;125(1):99–103.

    PubMed  CAS  Google Scholar 

  124. Thody AJ, et al. Pheomelanin as well as eumelanin is present in human epidermis. J Invest Dermatol. 1991;97(2):340–4.

    Article  PubMed  CAS  Google Scholar 

  125. Schallreuter KU, et al. Regulation of melanogenesis—controversies and new concepts. Exp Dermatol. 2008;17(5):395–404.

    Article  PubMed  CAS  Google Scholar 

  126. Schallreuter KU. Advances in melanocyte basic science research. Dermatol Clin. 2007;25(3):283–91. vii.

    Article  PubMed  CAS  Google Scholar 

  127. Shaheen MA, Fattah NS, El-Borhamy MI. Analysis of serum folate levels after narrow band UVB exposure. EDOJ. 2006;2(1):1–7.

    Google Scholar 

  128. Fukuwatari T, Fujita M, Shibata K. Effects of UVA irradiation on the concentration of folate in human blood. Biosci Biotechnol Biochem. 2009;73(2):322–7.

    Article  PubMed  CAS  Google Scholar 

  129. El-Saie LT, et al. Effect of narrowband ultraviolet B phototherapy on serum folic acid levels in patients with psoriasis. Lasers Med Sci. 2011;26(4):481–5.

    Article  PubMed  Google Scholar 

  130. Gambichler T, et al. Serum folate levels after UVA exposure: a two-group parallel randomised controlled trial. BMC Dermatol. 2001;1:8.

    Article  PubMed  CAS  Google Scholar 

  131. Juzeniene A, et al. Pilot study of folate status in healthy volunteers and in patients with psoriasis before and after UV exposure. J Photochem Photobiol B. 2010;101(2):111–6.

    Article  PubMed  CAS  Google Scholar 

  132. Rose RF, et al. Narrowband ultraviolet B phototherapy does not influence serum and red cell folate levels in patients with psoriasis. J Am Acad Dermatol. 2009;61(2):259–62.

    Article  PubMed  CAS  Google Scholar 

  133. Cicarma E, et al. Influence of narrowband UVB phototherapy on vitamin D and folate status. Exp Dermatol. 2010;19(8):e67–72.

    Article  PubMed  Google Scholar 

  134. Dainichi T, et al. By the grace of peeling: the brace function of the stratum corneum in the protection from photo-induced keratinocyte carcinogenesis. Arch Dermatol Res. 2008;300 Suppl 1:S31–8.

    Article  PubMed  Google Scholar 

  135. Hirakawa K, et al. Sequence-specific DNA damage induced by ultraviolet A-irradiated folic acid via its photolysis product. Arch Biochem Biophys. 2003;410(2):261–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yira Bermudez Ph.D., M.B.A. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bermudez, Y., Cordova, K., Williams, J.D. (2013). Folate Nutrition in Skin Health and Skin Cancer Prevention. In: Watson, R., Zibadi, S. (eds) Bioactive Dietary Factors and Plant Extracts in Dermatology. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-167-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-167-7_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-166-0

  • Online ISBN: 978-1-62703-167-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics