Skip to main content

Cardiac CT in the Setting of Heart Transplantation

  • Chapter
  • First Online:
CT of the Heart

Part of the book series: Contemporary Medical Imaging ((CMI))

  • 2769 Accesses

Abstract

Cardiac transplantation is the treatment of choice for patients with end-stage heart failure. Long-term prognosis and survival after heart transplantation is related to cardiac allograft vasculopathy (CAV), renal failure, and malignancy. Cardiac CT, particularly using latest generation equipment, is a unique imaging modality that allows the assessment of posttransplant anatomy and the detection of early and late complications related to the procedure. Coronary artery lumen and wall are now viewed and analyzed with unprecedented anatomical detail, whereas specific CT acquisition modes also enable the evaluation of cardiac morphologic and functional parameters in good agreement with established imaging modalities. Although conventional coronary angiography remains the reference standard for the diagnosis of CAV, the results of most recent studies and meta-analysis suggest that CCTA could be considered as an alternative to conventional coronary angiography in the routine surveillance of heart transplant recipients. However, further research is warranted to determine the impact of this imaging technology in the management and clinical outcomes of this patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stehlik J, Edwards LB, Kucheryavaya AY, Benden C, Christie JD, Dobbels F, et al. The registry of the International Society for Heart and Lung Transplantation: twenty-eighth adult heart transplant report – 2011. J Heart Lung Transplant. 2011;30(10):1078–94.

    PubMed  Google Scholar 

  2. Shumway NE, Lower RR, Stofer RC. Transplantation of the heart. Adv Surg. 1966;2:265–84.

    CAS  PubMed  Google Scholar 

  3. Dreyfus G, Jebara V, Mihaileanu S, Carpentier AF. Total orthotopic heart transplantation: an alternative to the standard technique. Ann Thorac Surg. 1991;52(5):1181–4.

    CAS  PubMed  Google Scholar 

  4. Sievers HH, Weyand M, Kraatz EG, Bernhard A. An alternative technique for orthotopic cardiac transplantation, with preservation of the normal anatomy of the right atrium. Thorac Cardiovasc Surg. 1991;39(2):70–2.

    CAS  PubMed  Google Scholar 

  5. Weiss ES, Nwakanma LU, Russell SB, Conte JV, Shah AS. Outcomes in bicaval versus biatrial techniques in heart transplantation: an analysis of the UNOS database. J Heart Lung Transplant. 2008;27(2):178–83.

    PubMed  Google Scholar 

  6. Knisely BL, Mastey LA, Collins J, Kuhlman JE. Imaging of cardiac transplantation complications. Radiographics. 1999;19(2):321–39; discussion 40–1

    CAS  PubMed  Google Scholar 

  7. Triposkiadis F, Starling RC, Haas GJ, Sparks E, Myerowitz PD, Boudoulas H. Timing of recipient atrial contraction: a major determinant of transmitral diastolic flow in orthotopic cardiac transplantation. Am Heart J. 1993;126(5):1175–81.

    CAS  PubMed  Google Scholar 

  8. Stevenson LW, Dadourian BJ, Kobashigawa J, Child JS, Clark SH, Laks H. Mitral regurgitation after cardiac transplantation. Am J Cardiol. 1987;60(1):119–22.

    CAS  PubMed  Google Scholar 

  9. Gorcsan J 3rd, Snow FR, Paulsen W, Arrowood JA, Thompson JA, Nixon JV. Echocardiographic profile of the transplanted human heart in clinically well recipients. J Heart Lung Transplant. 1992;11(1 Pt 1):80–9.

    PubMed  Google Scholar 

  10. Lai HY, Chen JH, Chiu KM, Wang KL, Cheung WK, Li AH, et al. CT of two hearts beating in one chest. AJR Am J Roentgenol. 2008;191(6):1711–6.

    PubMed  Google Scholar 

  11. Roux C, Varnous S, Leprince P, Cluzel P. Two hearts, one soul: heterotopic heart transplantation follow-up with cardiac computed tomography. Eur Heart J. 2016;37:3356.

    PubMed  Google Scholar 

  12. Schmauss D, Weis M. Cardiac allograft vasculopathy: recent developments. Circulation. 2008;117(16):2131–41.

    PubMed  Google Scholar 

  13. Rahmani M, Cruz RP, Granville DJ, McManus BM. Allograft vasculopathy versus atherosclerosis. Circ Res. 2006;99(8):801–15.

    CAS  PubMed  Google Scholar 

  14. Lamich R, Ballester M, Marti V, Brossa V, Aymat R, Carrio I, et al. Efficacy of augmented immunosuppressive therapy for early vasculopathy in heart transplantation. J Am Coll Cardiol. 1998;32(2):413–9.

    CAS  PubMed  Google Scholar 

  15. Costanzo MR, Dipchand A, Starling R, Anderson A, Chan M, Desai S, et al. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J Heart Lung Transplant. 2010;29(8):914–56.

    PubMed  Google Scholar 

  16. Mehra MR, Crespo-Leiro MG, Dipchand A, Ensminger SM, Hiemann NE, Kobashigawa JA, et al. International Society for Heart and Lung Transplantation working formulation of a standardized nomenclature for cardiac allograft vasculopathy-2010. J Heart Lung Transplant. 2010;29(7):717–27.

    PubMed  Google Scholar 

  17. St Goar FG, Pinto FJ, Alderman EL, Valantine HA, Schroeder JS, Gao SZ, et al. Intracoronary ultrasound in cardiac transplant recipients. In vivo evidence of “angiographically silent” intimal thickening. Circulation. 1992;85(3):979–87.

    CAS  PubMed  Google Scholar 

  18. Spes CH, Klauss V, Rieber J, Schnaack SD, Tammen AR, Uberfuhr P, et al. Functional and morphological findings in heart transplant recipients with a normal coronary angiogram: an analysis by dobutamine stress echocardiography, intracoronary Doppler and intravascular ultrasound. J Heart Lung Transplant. 1999;18(5):391–8.

    CAS  PubMed  Google Scholar 

  19. Khandhar SJ, Yamamoto H, Teuteberg JJ, Shullo MA, Bezerra HG, Costa MA, et al. Optical coherence tomography for characterization of cardiac allograft vasculopathy after heart transplantation (OCTCAV study). J Heart Lung Transplant. 2013;32(6):596–602.

    PubMed  Google Scholar 

  20. Hou J, Lv H, Jia H, Zhang S, Xing L, Liu H, et al. OCT assessment of allograft vasculopathy in heart transplant recipients. JACC Cardiovasc Imaging. 2012;5(6):662–3.

    PubMed  Google Scholar 

  21. Johnson DE, Alderman EL, Schroeder JS, Gao SZ, Hunt S, DeCampli WM, et al. Transplant coronary artery disease: histopathologic correlations with angiographic morphology. J Am Coll Cardiol. 1991;17(2):449–57.

    CAS  PubMed  Google Scholar 

  22. Rickenbacher PR, Pinto FJ, Chenzbraun A, Botas J, Lewis NP, Alderman EL, et al. Incidence and severity of transplant coronary artery disease early and up to 15 years after transplantation as detected by intravascular ultrasound. J Am Coll Cardiol. 1995;25(1):171–7.

    CAS  PubMed  Google Scholar 

  23. Tsutsui H, Ziada KM, Schoenhagen P, Iyisoy A, Magyar WA, Crowe TD, et al. Lumen loss in transplant coronary artery disease is a biphasic process involving early intimal thickening and late constrictive remodeling: results from a 5-year serial intravascular ultrasound study. Circulation. 2001;104(6):653–7.

    CAS  PubMed  Google Scholar 

  24. Shan P, Dong L, Maehara A, Nazif TM, Ali ZA, Rabbani LE, et al. Comparison between cardiac allograft vasculopathy and native coronary atherosclerosis by optical coherence tomography. Am J Cardiol. 2016;117(8):1361–8.

    PubMed  Google Scholar 

  25. Cohn JM, Wilensky RL, O'Donnell JA, Bourdillon PD, Dillon JC, Feigenbaum H. Exercise echocardiography, angiography, and intracoronary ultrasound after cardiac transplantation. Am J Cardiol. 1996;77(14):1216–9.

    CAS  PubMed  Google Scholar 

  26. Akosah KO, McDaniel S, Hanrahan JS, Mohanty PK. Dobutamine stress echocardiography early after heart transplantation predicts development of allograft coronary artery disease and outcome. J Am Coll Cardiol. 1998;31(7):1607–14.

    CAS  PubMed  Google Scholar 

  27. Derumeaux G, Redonnet M, Soyer R, Cribier A, Letac B. Assessment of the progression of cardiac allograft vasculopathy by dobutamine stress echocardiography. J Heart Lung Transplant. 1998;17(3):259–67.

    CAS  PubMed  Google Scholar 

  28. Spes CH, Klauss V, Mudra H, Schnaack SD, Tammen AR, Rieber J, et al. Diagnostic and prognostic value of serial dobutamine stress echocardiography for noninvasive assessment of cardiac allograft vasculopathy: a comparison with coronary angiography and intravascular ultrasound. Circulation. 1999;100(5):509–15.

    CAS  PubMed  Google Scholar 

  29. Spes CH, Mudra H, Schnaack SD, Klauss V, Reichle FM, Uberfuhr P, et al. Dobutamine stress echocardiography for noninvasive diagnosis of cardiac allograft vasculopathy: a comparison with angiography and intravascular ultrasound. Am J Cardiol. 1996;78(2):168–74.

    CAS  PubMed  Google Scholar 

  30. Mastrobuoni S, Bastarrika G, Ubilla M, Castano S, Azcarate P, Barrero EA, et al. Dual-source CT coronary angiogram in heart transplant recipients in comparison with dobutamine stress echocardiography for detection of cardiac allograft vasculopathy. Transplantation. 2009;87(4):587–90.

    PubMed  Google Scholar 

  31. Ciliberto GR, Ruffini L, Mangiavacchi M, Parolini M, Sara R, Massa D, et al. Resting echocardiography and quantitative dipyridamole technetium-99m sestamibi tomography in the identification of cardiac allograft vasculopathy and the prediction of long-term prognosis after heart transplantation. Eur Heart J. 2001;22(11):964–71.

    CAS  PubMed  Google Scholar 

  32. Elhendy A, Sozzi FB, van Domburg RT, Vantrimpont P, Valkema R, Krenning EP, et al. Accuracy of dobutamine tetrofosmin myocardial perfusion imaging for the noninvasive diagnosis of transplant coronary artery stenosis. J Heart Lung Transplant. 2000;19(4):360–6.

    CAS  PubMed  Google Scholar 

  33. Braggion-Santos MF, Lossnitzer D, Buss S, Lehrke S, Doesch A, Giannitsis E, et al. Late gadolinium enhancement assessed by cardiac magnetic resonance imaging in heart transplant recipients with different stages of cardiac allograft vasculopathy. Eur Heart J Cardiovasc Imaging. 2014;15(10):1125–32.

    PubMed  Google Scholar 

  34. Pedrotti P, Bonacina E, Vittori C, Frigerio M, Roghi A. Pathologic correlates of late gadolinium enhancement cardiovascular magnetic resonance in a heart transplant patient. Cardiovasc Pathol. 2015;24(4):247–9.

    PubMed  Google Scholar 

  35. Riesenkampff E, Chen CK, Kantor PF, Greenway S, Chaturvedi RR, Yoo SJ, et al. Diffuse myocardial fibrosis in children after heart transplantations: a magnetic resonance T1 mapping study. Transplantation. 2015;99(12):2656–62.

    PubMed  Google Scholar 

  36. Ellims AH, Shaw JA, Stub D, Iles LM, Hare JL, Slavin GS, et al. Diffuse myocardial fibrosis evaluated by post-contrast t1 mapping correlates with left ventricular stiffness. J Am Coll Cardiol. 2014;63(11):1112–8.

    PubMed  Google Scholar 

  37. Usman AA, Taimen K, Wasielewski M, McDonald J, Shah S, Giri S, et al. Cardiac magnetic resonance T2 mapping in the monitoring and follow-up of acute cardiac transplant rejection: a pilot study. Circ Cardiovasc Imaging. 2012;5(6):782–90.

    PubMed  Google Scholar 

  38. Muehling OM, Wilke NM, Panse P, Jerosch-Herold M, Wilson BV, Wilson RF, et al. Reduced myocardial perfusion reserve and transmural perfusion gradient in heart transplant arteriopathy assessed by magnetic resonance imaging. J Am Coll Cardiol. 2003;42(6):1054–60.

    PubMed  Google Scholar 

  39. Miller CA, Sarma J, Naish JH, Yonan N, Williams SG, Shaw SM, et al. Multiparametric cardiovascular magnetic resonance assessment of cardiac allograft vasculopathy. J Am Coll Cardiol. 2014;63(8):799–808.

    PubMed  Google Scholar 

  40. Chih S, Ross HJ, Alba AC, Fan CS, Manlhiot C, Crean AM. Perfusion cardiac magnetic resonance imaging as a rule-out test for cardiac allograft vasculopathy. Am J Transplant. 2016;16(10):3007–15.

    CAS  PubMed  Google Scholar 

  41. Ferencik M, Brady TJ, Hoffmann U. Computed tomography imaging of cardiac allograft vasculopathy. J Cardiovasc Comput Tomogr. 2012;6(4):223–31.

    PubMed  Google Scholar 

  42. Bastarrika G, De Cecco CN, Arraiza M, Ubilla M, Mastrobuoni S, Pueyo JC, et al. Dual-source CT coronary imaging in heart transplant recipients: image quality and optimal reconstruction interval. Eur Radiol. 2008;18(9):1791–9.

    PubMed  Google Scholar 

  43. Gregory SA, Ferencik M, Achenbach S, Yeh RW, Hoffmann U, Inglessis I, et al. Comparison of sixty-four-slice multidetector computed tomographic coronary angiography to coronary angiography with intravascular ultrasound for the detection of transplant vasculopathy. Am J Cardiol. 2006;98(7):877–84.

    PubMed  Google Scholar 

  44. Romeo G, Houyel L, Angel CY, Brenot P, Riou JY, Paul JF. Coronary stenosis detection by 16-slice computed tomography in heart transplant patients: comparison with conventional angiography and impact on clinical management. J Am Coll Cardiol. 2005;45(11):1826–31.

    PubMed  Google Scholar 

  45. Sigurdsson G, Carrascosa P, Yamani MH, Greenberg NL, Perrone S, Lev G, et al. Detection of transplant coronary artery disease using multidetector computed tomography with adaptative multisegment reconstruction. J Am Coll Cardiol. 2006;48(4):772–8.

    PubMed  Google Scholar 

  46. Bastarrika G, Broncano J, Arraiza M, Azcarate PM, Simon-Yarza I, Levy Praschker BG, et al. Systolic prospectively ECG-triggered dual-source CT angiography for evaluation of the coronary arteries in heart transplant recipients. Eur Radiol. 2011;21(9):1887–94.

    PubMed  Google Scholar 

  47. Bastarrika G, De Cecco CN, Arraiza M, Mastrobuoni S, Pueyo JC, Ubilla M, et al. Dual-source CT for visualization of the coronary arteries in heart transplant patients with high heart rates. AJR Am J Roentgenol. 2008;191(2):448–54.

    PubMed  Google Scholar 

  48. Mittal TK, Panicker MG, Mitchell AG, Banner NR. Cardiac allograft vasculopathy after heart transplantation: electrocardiographically gated cardiac CT angiography for assessment. Radiology. 2013;268(2):374–81.

    PubMed  Google Scholar 

  49. Shuman WP, Branch KR, May JM, Mitsumori LM, Lockhart DW, Dubinsky TJ, et al. Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology. 2008;248(2):431–7.

    PubMed  Google Scholar 

  50. Schepis T, Achenbach S, Weyand M, Raum P, Marwan M, Pflederer T, et al. Comparison of dual source computed tomography versus intravascular ultrasound for evaluation of coronary arteries at least one year after cardiac transplantation. Am J Cardiol. 2009;104(10):1351–6.

    PubMed  Google Scholar 

  51. Adler G, Meille L, Rohnean A, Sigal-Cinqualbre A, Capderou A, Paul JF. Robustness of end-systolic reconstructions in coronary dual-source CT angiography for high heart rate patients. Eur Radiol. 2010;20(5):1118–23.

    PubMed  Google Scholar 

  52. Taylor AJ, Cerqueira M, Hodgson JM, Mark D, Min J, O'Gara P, et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol. 2010;56(22):1864–94.

    PubMed  Google Scholar 

  53. Ludman PF, Lazem F, Barbir M, Yacoub M. Incidence and clinical relevance of coronary calcification detected by electron beam computed tomography in heart transplant recipients. Eur Heart J. 1999;20(4):303–8.

    CAS  PubMed  Google Scholar 

  54. von Ziegler F, Kaczmarek I, Knez A, Greif M, Rummler J, Meiser B, et al. Coronary calcifications detected by computed tomography are not markers of cardiac allograft vasculopathy. Transplantation. 2011;92(4):493–8.

    Google Scholar 

  55. Moro J, Almenar L, Igual B, Martinez-Dolz L, Sanchez E, Martin J, et al. Multislice CT in graft vascular disease. A pilot study. Transplant Proc. 2006;38(8):2563–5.

    CAS  PubMed  Google Scholar 

  56. Pichler P, Loewe C, Roedler S, Syeda B, Stadler A, Aliabadi A, et al. Detection of high-grade stenoses with multislice computed tomography in heart transplant patients. J Heart Lung Transplant. 2008;27(3):310–6.

    PubMed  Google Scholar 

  57. Iyengar S, Feldman DS, Cooke GE, Leier CV, Raman SV. Detection of coronary artery disease in orthotopic heart transplant recipients with 64-detector row computed tomography angiography. J Heart Lung Transplant. 2006;25(11):1363–6.

    PubMed  Google Scholar 

  58. von Ziegler F, Leber AW, Becker A, Kaczmarek I, Schonermarck U, Raps C, et al. Detection of significant coronary artery stenosis with 64-slice computed tomography in heart transplant recipients: a comparative study with conventional coronary angiography. Int J Cardiovasc Imaging. 2009;25(1):91–100.

    Google Scholar 

  59. von Ziegler F, Rummler J, Kaczmarek I, Greif M, Schenzle J, Helbig S, et al. Detection of significant coronary artery stenosis with cardiac dual-source computed tomography angiography in heart transplant recipients. Transpl Int. 2012;25(10):1065–71.

    Google Scholar 

  60. Kepka C, Sobieszczansk-Malek M, Pregowski J, Kruk M, Bekta P, Opolski M, et al. Usefulness of dual-source computed tomography for the evaluation of coronary arteries in heart transplant recipients. Kardiol Pol. 2012;70(11):1111–9.

    PubMed  Google Scholar 

  61. Khan R, Jang IK. Evaluation of coronary allograft vasculopathy using multi-detector row computed tomography: a systematic review. Eur J Cardiothorac Surg. 2012;41(2):415–22.

    PubMed  Google Scholar 

  62. Wever-Pinzon O, Romero J, Kelesidis I, Wever-Pinzon J, Manrique C, Budge D, et al. Coronary computed tomography angiography for the detection of cardiac allograft vasculopathy: a meta-analysis of prospective trials. J Am Coll Cardiol. 2014;63(19):1992–2004.

    PubMed  Google Scholar 

  63. Rohnean A, Houyel L, Sigal-Cinqualbre A, To NT, Elfassy E, Paul JF. Heart transplant patient outcomes: 5-year mean follow-up by coronary computed tomography angiography. Transplantation. 2011;91(5):583–8.

    PubMed  Google Scholar 

  64. Globits S, De Marco T, Schwitter J, Sakuma H, O'Sullivan M, Rifkin C, et al. Assessment of early left ventricular remodeling in orthotopic heart transplant recipients with cine magnetic resonance imaging: potential mechanisms. J Heart Lung Transplant. 1997;16(5):504–10.

    CAS  PubMed  Google Scholar 

  65. Bellenger NG, Marcus NJ, Davies C, Yacoub M, Banner NR, Pennell DJ. Left ventricular function and mass after orthotopic heart transplantation: a comparison of cardiovascular magnetic resonance with echocardiography. J Heart Lung Transplant. 2000;19(5):444–52.

    CAS  PubMed  Google Scholar 

  66. Kronik G, Slany J, Mosslacher H. Comparative value of eight M-mode echocardiographic formulas for determining left ventricular stroke volume. A correlative study with thermodilution and left ventricular single-plane cineangiography. Circulation. 1979;60(6):1308–16.

    CAS  PubMed  Google Scholar 

  67. Allison JD, Flickinger FW, Wright JC, Falls DG 3rd, Prisant LM, VonDohlen TW, et al. Measurement of left ventricular mass in hypertrophic cardiomyopathy using MRI: comparison with echocardiography. Magn Reson Imaging. 1993;11(3):329–34.

    CAS  PubMed  Google Scholar 

  68. Pennell DJ, Sechtem UP, Higgins CB, Manning WJ, Pohost GM, Rademakers FE, et al. Clinical indications for cardiovascular magnetic resonance (CMR): Consensus Panel report. Eur Heart J. 2004;25(21):1940–65.

    PubMed  Google Scholar 

  69. Sandstede J, Lipke C, Beer M, Hofmann S, Pabst T, Kenn W, et al. Age- and gender-specific differences in left and right ventricular cardiac function and mass determined by cine magnetic resonance imaging. Eur Radiol. 2000;10(3):438–42.

    CAS  PubMed  Google Scholar 

  70. Natori S, Lai S, Finn JP, Gomes AS, Hundley WG, Jerosch-Herold M, et al. Cardiovascular function in multi-ethnic study of atherosclerosis: normal values by age, sex, and ethnicity. AJR Am J Roentgenol. 2006;186(6 Suppl 2):S357–65.

    PubMed  Google Scholar 

  71. Myerson SG, Bellenger NG, Pennell DJ. Assessment of left ventricular mass by cardiovascular magnetic resonance. Hypertension. 2002;39(3):750–5.

    CAS  PubMed  Google Scholar 

  72. Ferencik M, Gregory SA, Butler J, Achenbach S, Yeh RW, Hoffmann U, et al. Analysis of cardiac dimensions, mass and function in heart transplant recipients using 64-slice multi-detector computed tomography. J Heart Lung Transplant. 2007;26(5):478–84.

    PubMed  Google Scholar 

  73. Bastarrika G, Arraiza M, De Cecco CN, Broncano J, Mastrobuoni S, Ubilla M, et al. Dual-source CT in heart transplant recipients: quantification of global left ventricular function and mass. J Thorac Imaging. 2009;24(2):103–9.

    PubMed  Google Scholar 

  74. Bastarrika G, Arraiza M, De Cecco CN, Mastrobuoni S, Ubilla M, Rabago G. Quantification of left ventricular function and mass in heart transplant recipients using dual-source CT and MRI: initial clinical experience. Eur Radiol. 2008;18(9):1784–90.

    PubMed  Google Scholar 

  75. Bastarrika G, Zudaire B, Ferreira M, Arraiza M, Saiz-Mendiguren R, Rabago G. Assessment of left atrial volumes and function in orthotopic heart transplant recipients by dual-source CT: comparison with MRI. Investig Radiol. 2010;45(2):72–6.

    Google Scholar 

  76. Cole WH. The increase in immunosuppression and its role in the development of malignant lesions. J Surg Oncol. 1985;30(3):139–44.

    CAS  PubMed  Google Scholar 

  77. Roussel JC, Baron O, Perigaud C, Bizouarn P, Pattier S, Habash O, et al. Outcome of heart transplants 15 to 20 years ago: graft survival, post-transplant morbidity, and risk factors for mortality. J Heart Lung Transplant. 2008;27(5):486–93.

    PubMed  Google Scholar 

  78. Budoff MJ, Gopal A. Incidental findings on cardiac computed tomography. Should we look? J Cardiovasc Comput Tomogr. 2007;1(2):97–105.

    PubMed  Google Scholar 

  79. Earls JP. The pros and cons of searching for extracardiac findings at cardiac CT: studies should be reconstructed in the maximum field of view and adequately reviewed to detect pathologic findings. Radiology. 2011;261(2):342–6.

    PubMed  Google Scholar 

  80. Hlatky MA, Iribarren C. The dilemma of incidental findings on cardiac computed tomography. J Am Coll Cardiol. 2009;54(16):1542–3.

    PubMed  Google Scholar 

  81. Killeen RP, Dodd JD, Cury RC. Noncardiac findings on cardiac CT part I: pros and cons. J Cardiovasc Comput Tomogr. 2009;3(5):293–9.

    PubMed  Google Scholar 

  82. White CS. The pros and cons of searching for extracardiac findings at cardiac CT: use of a restricted field of view is acceptable. Radiology. 2011;261(2):338–41.

    PubMed  Google Scholar 

  83. Budoff MJ, Fischer H, Gopal A. Incidental findings with cardiac CT evaluation: should we read beyond the heart? Catheter Cardiovasc Interv. 2006;68(6):965–73.

    PubMed  Google Scholar 

  84. Dewey M, Schnapauff D, Teige F, Hamm B. Non-cardiac findings on coronary computed tomography and magnetic resonance imaging. Eur Radiol. 2007;17(8):2038–43.

    PubMed  Google Scholar 

  85. Kirsch J, Araoz PA, Steinberg FB, Fletcher JG, McCollough CH, Williamson EE. Prevalence and significance of incidental extracardiac findings at 64-multidetector coronary CTA. J Thorac Imaging. 2007;22(4):330–4.

    PubMed  Google Scholar 

  86. Johnson KM. Extracardiac findings on cardiac computed tomography: a radiologist's perspective. J Am Coll Cardiol. 2010;55(15):1566–8.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gorka Bastarrika .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Humana Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bastarrika, G., Rábago, G. (2019). Cardiac CT in the Setting of Heart Transplantation. In: Schoepf, U. (eds) CT of the Heart. Contemporary Medical Imaging. Humana, Totowa, NJ. https://doi.org/10.1007/978-1-60327-237-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-237-7_34

  • Published:

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-60327-236-0

  • Online ISBN: 978-1-60327-237-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics